-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathrun_xvector_e2e.py
executable file
·246 lines (198 loc) · 11 KB
/
run_xvector_e2e.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Apr 3 20:02:04 2020
@author: shreyasr, prashantk
"""
# %% Imports
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import os
import sys
import random
import pickle
import subprocess
from utils.NpldaConf import E2EConf
from pdb import set_trace as bp
import time
from utils.sv_trials_loaders import combine_trials_and_get_loader, get_trials_loaders_dict, load_xvec_trials_from_numbatch, load_xvec_trials_from_idbatch, extract_till_plda_embeddings, load_mfccs_from_numbatch, custom_loader_e2e, custom_loader_e2e_v2, custom_loader_e2e_v3
from datetime import datetime
import logging
from utils.models import Etdnn_Xvec_NeuralPlda
# %% Function Definitions
def train(nc, model, device, train_loader, mega_mfcc_dict, num_to_id_dict, optimizer, epoch, timestamp, valid_loaders=None, start_at_iter=0):
model.train1()
losses = []
n_trials = sum([len(target) for data1, data2, target in train_loader])
n_trials_processed = 0
cooldown_timer_start = datetime.timestamp(datetime.now())
for batch_idx, (data1, data2, target) in enumerate(train_loader):
if batch_idx < start_at_iter:
continue
optimizer.zero_grad()
target = target.to(device)
bs = len(data1)
n_trials_processed += bs
uniq, inds = torch.unique(torch.cat((data1,data2)), return_inverse=True)
tmpvar = load_mfccs_from_numbatch(mega_mfcc_dict, num_to_id_dict, uniq, device)
if type(tmpvar) is not tuple:
data_xvec = model.extract_plda_embeddings(tmpvar)
data1_xvec, data2_xvec = data_xvec[inds][:bs], data_xvec[inds][bs:]
else:
data_mfcc, sort_idx, unsort_idx = tmpvar
data_xvec = torch.cat(tuple(model.extract_plda_embeddings(mfcc) for mfcc in data_mfcc))
data_xvec = data_xvec[unsort_idx]
data1_xvec, data2_xvec = data_xvec[inds][:bs], data_xvec[inds][bs:]
output = model.forward_from_plda_embeddings(data1_xvec, data2_xvec)
loss = model.loss(output, target)
losses.append(loss.item())
loss.backward()
optimizer.step()
gpu_up_time = datetime.timestamp(datetime.now()) - cooldown_timer_start
if gpu_up_time > 3600:
model = model.to(torch.device('cpu'))
del data_mfcc
del data_xvec
del data1_xvec
del data2_xvec
del output
with torch.cuda.device(device):
torch.cuda.empty_cache()
print("\nWaiting for a minute now for the GPU to cool down...\n")
logging.info("\nWaiting for a minute now for the GPU to cool down...\n")
pickle.dump([model, epoch, batch_idx+1, nc.lr], open('models/model_progress_{}.pkl'.format(timestamp),'wb'))
sys.stdout.flush()
time.sleep(60)
model = model.to(device)
cooldown_timer_start = datetime.timestamp(datetime.now())
if batch_idx % nc.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\t {}: {:.6f}'.format(
epoch, n_trials_processed, n_trials,
100. * batch_idx / len(train_loader), nc.loss, sum(losses)/len(losses)))
logging.info('Train Epoch: {} [{}/{} ({:.0f}%)]\t {}: {:.6f}'.format(
epoch, n_trials_processed, n_trials,
100. * batch_idx / len(train_loader), nc.loss, sum(losses)/len(losses)))
losses = []
def validate(nc, model, device, mega_mfcc_dict, num_to_id_dict, data_loader, update_thresholds=False):
model.eval()
extracted_plda_embeddings = extract_till_plda_embeddings(model, mega_mfcc_dict, data_loader, num_to_id_dict, device)
with torch.no_grad():
targets, scores = torch.tensor([]).to(device), torch.tensor([]).to(device)
for data1, data2, target in data_loader:
data1, data2, target = data1.to(device), data2.to(device), target.to(device)
data1_xvec, data2_xvec = load_xvec_trials_from_numbatch(extracted_plda_embeddings, num_to_id_dict, data1, data2, device)
targets = torch.cat((targets, target))
scores_batch = model.forward_from_plda_embeddings(data1_xvec, data2_xvec)
scores = torch.cat((scores, scores_batch))
soft_cdet_loss = model.softcdet(scores, targets)
cdet_mdl = model.cdet(scores, targets)
# minc, minc_threshold = model.minc(scores, targets, update_thresholds=update_thresholds, showplots=True)
minc, minc_threshold = model.minc(scores, targets, update_thresholds=update_thresholds)
logging.info('\n\nTest set: C_det (mdl): {:.4f}\n'.format(cdet_mdl))
logging.info('Test set: soft C_det (mdl): {:.4f}\n'.format(soft_cdet_loss))
logging.info('Test set: C_min: {:.4f}\n'.format(minc))
for beta in nc.beta:
logging.info('Test set: argmin threshold [{}]: {:.4f}\n'.format(beta, minc_threshold[beta]))
print('\n\nTest set: C_det (mdl): {:.4f}\n'.format(cdet_mdl))
print('Test set: soft C_det (mdl): {:.4f}\n'.format(soft_cdet_loss))
print('Test set: C_min: {:.4f}\n'.format(minc))
for beta in nc.beta:
print('Test set: argmin threshold [{}]: {:.4f}\n'.format(beta, minc_threshold[beta]))
return minc, minc_threshold
def initialize_model(nc, device, timestamp, mega_mfcc_dict, valid_loaders_dict, id_to_num_dict, num_to_id_dict):
model = Etdnn_Xvec_NeuralPlda(nc).to(device)
if nc.initialization == 'kaldi':
model.LoadParamsFromKaldi(nc.xvec_model, nc.meanvec, nc.transformmat, nc.kaldiplda)
else:
model = pickle.load(open(nc.initialization,'rb'))
print("Initializing the thresholds... Whatever numbers that get printed here are junk.\n")
valloss, minC_threshold = validate(nc, model, device, mega_mfcc_dict, num_to_id_dict, valid_loaders_dict[nc.heldout_set_for_th_init], update_thresholds=True)
print("\n\nEpoch 0: After Initialization\n")
for val_set, valid_loader in valid_loaders_dict.items():
print("Validating {}".format(val_set))
logging.info("Validating {}".format(val_set))
valloss, minC_threshold = validate(nc, model, device, mega_mfcc_dict, num_to_id_dict, valid_loader)
return model
def main(timestamp=False):
if not timestamp:
timestamp = int(datetime.timestamp(datetime.now()))
print(timestamp)
logging.basicConfig(filename='logs/e2e_NPLDA_{}.log'.format(timestamp),
filemode='a',
format='%(levelname)s: %(message)s',
datefmt='%H:%M:%S',
level=logging.DEBUG)
# %% Configure Training
configfile = 'conf/sre18_eval_20s_config_e2e.cfg'
nc = E2EConf(configfile)
torch.manual_seed(nc.seed)
np.random.seed(nc.seed)
random.seed(nc.seed)
logging.info(" Running file {}\n\nStarted at {}.\n".format(sys.argv[0], datetime.now()))
if not torch.cuda.is_available():
nc.device='cpu'
device = torch.device(nc.device)
print("Running on {}...".format(nc.device))
logging.info("Running on {} ...\n".format(nc.device))
logging.info("\nConfiguration:\n\n{}\n\n".format(''.join(open(configfile,'r').readlines())))
# %%Load the generated training data trials and make loaders here
mega_mfcc_dict = pickle.load(open(nc.mega_mfcc_pkl, 'rb'))
num_to_id_dict = {i: j for i, j in enumerate(list(mega_mfcc_dict))}
id_to_num_dict = {v: k for k, v in num_to_id_dict.items()}
# train_loader = combine_trials_and_get_loader(nc.training_data_trials_list, id_to_num_dict, subsample_factors=nc.train_subsample_factors ,batch_size=nc.batch_size)
# train_loader_sampled = combine_trials_and_get_loader(nc.training_data_trials_list, id_to_num_dict, batch_size=nc.batch_size, subset=0.05)
valid_loaders_dict = get_trials_loaders_dict(nc.validation_trials_list, id_to_num_dict, subsample_factors=nc.valid_subsample_factors, batch_size=5*nc.batch_size)
# %% Initialize model and stuff
if os.path.exists('models/model_progress_{}.pkl'.format(timestamp)):
model, resume_epoch, resume_iter, nc.lr = pickle.load(open('models/model_progress_{}.pkl'.format(timestamp)),'rb')
model = model.to(device)
else:
model = initialize_model(nc, device, timestamp, mega_mfcc_dict, valid_loaders_dict, id_to_num_dict, num_to_id_dict)
resume_epoch, resume_iter = 1,0
bp()
params_dict = dict(model.named_parameters())
updatable_params = []
for param in params_dict.keys():
# if ('xvector_extractor' in param):
# if ('xvector_extractor.tdnn' in param) and ('10' not in param):
if False:
params_dict[param].requires_grad = False
else:
updatable_params.append(params_dict[param])
optimizer = optim.Adam(updatable_params, lr=nc.lr, weight_decay=1e-5)
if os.path.exists('trials_and_keys/train_loaders_{}.pkl'.format(timestamp)):
train_loaders = pickle.load(open('trials_and_keys/train_loaders_{}.pkl'.format(timestamp),'rb'))
else:
train_loaders = custom_loader_e2e_v3(nc, mega_mfcc_dict, id_to_num_dict, n_subepochs=nc.n_epochs)
pickle.dump(train_loaders, open('trials_and_keys/train_loaders_{}.pkl'.format(timestamp),'wb'))
#%% Training
all_losses = []
for epoch, train_loader in enumerate(train_loaders, start=1):
if epoch < resume_epoch:
continue
train(nc, model, device, train_loader , mega_mfcc_dict, num_to_id_dict, optimizer, epoch, timestamp, start_at_iter=resume_iter)
resume_iter=0
model.SaveModel("models/e2e_NPLDA_{}_{}.pt".format(epoch, timestamp))
for val_set, valid_loader in valid_loaders_dict.items():
print("Validating {}".format(val_set))
logging.info("Validating {}".format(val_set))
valloss, minC_threshold = validate(nc, model, device, mega_mfcc_dict, num_to_id_dict, valid_loader)
if val_set==nc.heldout_set_for_lr_decay:
all_losses.append(valloss)
try:
if (all_losses[-1] > all_losses[-2]) and (all_losses[-2] > all_losses[-3]):
nc.lr = nc.lr / 2
print("REDUCING LEARNING RATE to {} since loss trend looks like {}".format(nc.lr, all_losses[-3:]))
logging.info("REDUCING LEARNING RATE to {} since loss trend looks like {}".format(nc.lr, all_losses[-3:]))
optimizer = optim.Adam(updatable_params, lr=nc.lr, weight_decay=1e-5)
except:
pass
# for trial_file in nc.test_trials_list:
# print("Generating scores for Epoch {} with trial file {}".format(epoch, trial_file))
# nc.generate_scorefile("scores/kaldipldanet_epoch{}_{}_{}.txt".format(epoch, os.path.splitext(os.path.basename(trial_file))[0], timestamp), trial_file, mega_mfcc_dict, model, device
# %% __main__
if __name__ == '__main__':
main()