《labuladong 的算法秘籍》、《labuladong 的刷题笔记》两本 PDF 和刷题插件 2.0 免费开放下载,详情见 labuladong 的刷题三件套正式发布~
读完本文,你不仅学会了算法套路,还可以顺便去 LeetCode 上拿下如下题目:
-----------
我们最终要实现的计算器功能如下:
1、输入一个字符串,可以包含+ - * /
、数字、括号以及空格,你的算法返回运算结果。
2、要符合运算法则,括号的优先级最高,先乘除后加减。
3、除号是整数除法,无论正负都向 0 取整(5/2=2,-5/2=-2)。
4、可以假定输入的算式一定合法,且计算过程不会出现整型溢出,不会出现除数为 0 的意外情况。
比如输入如下字符串,算法会返回 9:
3 * (2-6 /(3 -7))
可以看到,这就已经非常接近我们实际生活中使用的计算器了,虽然我们以前肯定都用过计算器,但是如果简单思考一下其算法实现,就会大惊失色:
1、按照常理处理括号,要先计算最内层的括号,然后向外慢慢化简。这个过程我们手算都容易出错,何况写成算法呢!
2、要做到先乘除,后加减,这一点教会小朋友还不算难,但教给计算机恐怕有点困难。
3、要处理空格。我们为了美观,习惯性在数字和运算符之间打个空格,但是计算之中得想办法忽略这些空格。
我记得很多大学数据结构的教材上,在讲栈这种数据结构的时候,应该都会用计算器举例,但是有一说一,讲的真的垃圾,不知道多少未来的计算机科学家就被这种简单的数据结构劝退了。
那么本文就来聊聊怎么实现上述一个功能完备的计算器功能,关键在于层层拆解问题,化整为零,逐个击破,相信这种思维方式能帮大家解决各种复杂问题。
下面就来拆解,从最简单的一个问题开始。
是的,就是这么一个简单的问题,首先告诉我,怎么把一个字符串形式的正整数,转化成 int 型?
string s = "458";
int n = 0;
for (int i = 0; i < s.size(); i++) {
char c = s[i];
n = 10 * n + (c - '0');
}
// n 现在就等于 458
这个还是很简单的吧,老套路了。但是即便这么简单,依然有坑:(c - '0')
的这个括号不能省略,否则可能造成整型溢出。
因为变量c
是一个 ASCII 码,如果不加括号就会先加后减,想象一下s
如果接近 INT_MAX,就会溢出。所以用括号保证先减后加才行。
现在进一步,如果输入的这个算式只包含加减法,而且不存在空格,你怎么计算结果?我们拿字符串算式1-12+3
为例,来说一个很简单的思路:
1、先给第一个数字加一个默认符号+
,变成+1-12+3
。
2、把一个运算符和数字组合成一对儿,也就是三对儿+1
,-12
,+3
,把它们转化成数字,然后放到一个栈中。
3、将栈中所有的数字求和,就是原算式的结果。
我们直接看代码,结合一张图就看明白了:
int calculate(string s) {
stack<int> stk;
// 记录算式中的数字
int num = 0;
// 记录 num 前的符号,初始化为 +
char sign = '+';
for (int i = 0; i < s.size(); i++) {
char c = s[i];
// 如果是数字,连续读取到 num
if (isdigit(c))
num = 10 * num + (c - '0');
// 如果不是数字,就是遇到了下一个符号,
// 之前的数字和符号就要存进栈中
if (!isdigit(c) || i == s.size() - 1) {
switch (sign) {
case '+':
stk.push(num); break;
case '-':
stk.push(-num); break;
}
// 更新符号为当前符号,数字清零
sign = c;
num = 0;
}
}
// 将栈中所有结果求和就是答案
int res = 0;
while (!stk.empty()) {
res += stk.top();
stk.pop();
}
return res;
}
我估计就是中间带switch
语句的部分有点不好理解吧,i
就是从左到右扫描,sign
和num
跟在它身后。当s[i]
遇到一个运算符时,情况是这样的:
所以说,此时要根据sign
的 case 不同选择nums
的正负号,存入栈中,然后更新sign
并清零nums
记录下一对儿符合和数字的组合。
另外注意,不只是遇到新的符号会触发入栈,当i
走到了算式的尽头(i == s.size() - 1
),也应该将前面的数字入栈,方便后续计算最终结果。
至此,仅处理紧凑加减法字符串的算法就完成了,请确保理解以上内容,后续的内容就基于这个框架修修改改就完事儿了。
其实思路跟仅处理加减法没啥区别,拿字符串2-3*4+5
举例,核心思路依然是把字符串分解成符号和数字的组合。
比如上述例子就可以分解为+2
,-3
,*4
,+5
几对儿,我们刚才不是没有处理乘除号吗,很简单,其他部分都不用变,在switch
部分加上对应的 case 就行了:
for (int i = 0; i < s.size(); i++) {
char c = s[i];
if (isdigit(c))
num = 10 * num + (c - '0');
if (!isdigit(c) || i == s.size() - 1) {
switch (sign) {
int pre;
case '+':
stk.push(num); break;
case '-':
stk.push(-num); break;
// 只要拿出前一个数字做对应运算即可
case '*':
pre = stk.top();
stk.pop();
stk.push(pre * num);
break;
case '/':
pre = stk.top();
stk.pop();
stk.push(pre / num);
break;
}
// 更新符号为当前符号,数字清零
sign = c;
num = 0;
}
}
乘除法优先于加减法体现在,乘除法可以和栈顶的数结合,而加减法只能把自己放入栈。
现在我们思考一下如何处理字符串中可能出现的空格字符。其实也非常简单,想想空格字符的出现,会影响我们现有代码的哪一部分?
// 如果 c 非数字
if (!isdigit(c) || i == s.size() - 1) {
switch (c) {...}
sign = c;
num = 0;
}
显然空格会进入这个 if 语句,但是我们并不想让空格的情况进入这个 if,因为这里会更新sign
并清零nums
,空格根本就不是运算符,应该被忽略。
那么只要多加一个条件即可:
if ((!isdigit(c) && c != ' ') || i == s.size() - 1) {
...
}
好了,现在我们的算法已经可以按照正确的法则计算加减乘除,并且自动忽略空格符,剩下的就是如何让算法正确识别括号了。
处理算式中的括号看起来应该是最难的,但真没有看起来那么难。
为了规避编程语言的繁琐细节,我把前面解法的代码翻译成 Python 版本:
def calculate(s: str) -> int:
def helper(s: List) -> int:
stack = []
sign = '+'
num = 0
while len(s) > 0:
c = s.pop(0)
if c.isdigit():
num = 10 * num + int(c)
if (not c.isdigit() and c != ' ') or len(s) == 0:
if sign == '+':
stack.append(num)
elif sign == '-':
stack.append(-num)
elif sign == '*':
stack[-1] = stack[-1] * num
elif sign == '/':
# python 除法向 0 取整的写法
stack[-1] = int(stack[-1] / float(num))
num = 0
sign = c
return sum(stack)
# 需要把字符串转成列表方便操作
return helper(list(s))
这段代码跟刚才 C++ 代码完全相同,唯一的区别是,不是从左到右遍历字符串,而是不断从左边pop
出字符,本质还是一样的。
那么,为什么说处理括号没有看起来那么难呢,因为括号具有递归性质。我们拿字符串3*(4-5/2)-6
举例:
calculate(3*(4-5/2)-6
)
= 3 * calculate(4-5/2
) - 6
= 3 * 2 - 6
= 0
可以脑补一下,无论多少层括号嵌套,通过 calculate 函数递归调用自己,都可以将括号中的算式化简成一个数字。换句话说,括号包含的算式,我们直接视为一个数字就行了。
现在的问题是,递归的开始条件和结束条件是什么?遇到(
开始递归,遇到)
结束递归:
def calculate(s: str) -> int:
def helper(s: List) -> int:
stack = []
sign = '+'
num = 0
while len(s) > 0:
c = s.pop(0)
if c.isdigit():
num = 10 * num + int(c)
# 遇到左括号开始递归计算 num
if c == '(':
num = helper(s)
if (not c.isdigit() and c != ' ') or len(s) == 0:
if sign == '+': ...
elif sign == '-': ...
elif sign == '*': ...
elif sign == '/': ...
num = 0
sign = c
# 遇到右括号返回递归结果
if c == ')': break
return sum(stack)
return helper(list(s))
你看,加了两三行代码,就可以处理括号了,这就是递归的魅力。至此,计算器的全部功能就实现了,通过对问题的层层拆解化整为零,再回头看,这个问题似乎也没那么复杂嘛。
本文借实现计算器的问题,主要想表达的是一种处理复杂问题的思路。
我们首先从字符串转数字这个简单问题开始,进而处理只包含加减法的算式,进而处理包含加减乘除四则运算的算式,进而处理空格字符,进而处理包含括号的算式。
可见,对于一些比较困难的问题,其解法并不是一蹴而就的,而是步步推进,螺旋上升的。如果一开始给你原题,你不会做,甚至看不懂答案,都很正常,关键在于我们自己如何简化问题,如何以退为进。
退而求其次是一种很聪明策略。你想想啊,假设这是一道考试题,你不会实现这个计算器,但是你写了字符串转整数的算法并指出了容易溢出的陷阱,那起码可以得 20 分吧;如果你能够处理加减法,那可以得 40 分吧;如果你能处理加减乘除四则运算,那起码够 70 分了;再加上处理空格字符,80 有了吧。我就是不会处理括号,那就算了,80 已经很 OK 了好不好。
_____________
刷算法,学套路,认准 labuladong,公众号和 在线电子书 持续更新最新文章。
本小抄即将出版,微信扫码关注公众号,后台回复「小抄」限时免费获取,回复「进群」可进刷题群一起刷题,带你搞定 LeetCode。
======其他语言代码======
说实话,用js的话,你完全可以妙用eval来秒杀这类题。
var calculate = function(s) {
var Fn = Function;
return new Fn('return ' + s)()
};
不过相信看该作者文章的读者,都是奔着学习框架思想来的,下面用js来还原上文代码。
/**
* @param {string} s
* @return {number}
*/
var calculate = function(s) {
var q = [], n = '', f = '+', a = typeof s === 'string' ? Array.from(s).reverse() : s
while(a.length || n) {
var p = a.pop()
if (p === ' ') continue
if (p === '(') {
n = calculate(a)
} else if (/\D/.test(p)) {
switch (f) {
case '+':
q.push(n)
break;
case '-':
q.push(-n)
break;
case '*':
q.push(q.pop() * n)
break;
case '/':
q.push(q.pop() / n | 0)
}
if (p === ')') break
f = p, n = ''
} else n += p
}
return q.reduce((p, v) => p + (v | 0), 0)
};
- 从左向右遍历字符串,符号标识
f
,初始+
空格
,忽视。数字
,当字符串拼接。非数字
,根据f
运算+
和-
入栈,*
和/
和栈第一位
运算,结果入栈- 返回栈的累加和
/**
* @param {string} s
* @return {number}
*/
var calculate = function(s) {
var q = [], n = '', f = '+'
for (var i = 0; i < s.length || n; i++) {
if (s[i] === ' ') continue
if (/\D/.test(s[i])) {
switch (f) {
case '+':
q.push(n)
break;
case '-':
q.push(-n)
break;
case '*':
q.push(q.pop() * n)
break;
case '/':
q.push(q.pop() / n | 0)
}
f = s[i], n = ''
} else n += s[i]
}
return q.reduce((p, v) => p + (v | 0), 0)
};
要会员才能做这道题,打扰了。