-
Notifications
You must be signed in to change notification settings - Fork 21
/
02_example_with_placeholders_and_for_loop.py
49 lines (39 loc) · 1.82 KB
/
02_example_with_placeholders_and_for_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os
import tempfile
import tensorflow as tf
from tensorflow.contrib.layers import fully_connected as fc
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.python.client import timeline
batch_size = 100
inputs = tf.placeholder(tf.float32, [batch_size, 784])
targets = tf.placeholder(tf.float32, [batch_size, 10])
with tf.variable_scope("layer_1"):
fc_1_out = fc(inputs, num_outputs=500, activation_fn=tf.nn.sigmoid)
with tf.variable_scope("layer_2"):
fc_2_out = fc(fc_1_out, num_outputs=784, activation_fn=tf.nn.sigmoid)
with tf.variable_scope("layer_3"):
logits = fc(fc_2_out, num_outputs=10)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=targets))
train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
if __name__ == '__main__':
mnist_save_dir = os.path.join(tempfile.gettempdir(), 'MNIST_data')
mnist = input_data.read_data_sets(mnist_save_dir, one_hot=True)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
for i in range(3):
batch_input, batch_target = mnist.train.next_batch(batch_size)
feed_dict = {inputs: batch_input,
targets: batch_target}
sess.run(train_op,
feed_dict=feed_dict,
options=options,
run_metadata=run_metadata)
fetched_timeline = timeline.Timeline(run_metadata.step_stats)
chrome_trace = fetched_timeline.generate_chrome_trace_format()
with open('timeline_02_step_%d.json' % i, 'w') as f:
f.write(chrome_trace)