-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpython_ensemble_learning.py
205 lines (141 loc) · 8.92 KB
/
python_ensemble_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#eng:import library
#tr:kütüphanelerin yüklenmesi
import numpy as np # eng: mathematical functions, tr:matematiksel işlemler
import pandas as pd #eng:data analysis and manipulation tool, tr:dataframeler ile veri analizi işlemleri
import seaborn as sns# eng:data visualization library, tr:görselleştirme
import matplotlib.pyplot as plt# eng:data visualization library, tr:görselleştirme
from matplotlib.colors import ListedColormap# eng:data visualization library, tr:görselleştirme
from sklearn.model_selection import train_test_split# eng:separation of the data set as training and testing , tr:veri setinin eğitim ve test olarak ayrılması
from sklearn.preprocessing import RobustScaler #eng:Scale features using statistics that are robust to outliers, tr:Aykırı değerlerden etkilenmeden öznitelik ölçekleme yapılması
from sklearn.datasets import make_moons, make_circles, make_classification #eng:create datasets 2 binary 1 multiclass, tr: verisetleri oluşturma 2 ikili 1 çoklu sınıf
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, VotingClassifier #eng:ensemble learnig , tr:topluluk öğrenmesi
# eng:warning library, tr:uyarı kütüphanesi
import warnings
warnings.filterwarnings('ignore')
#eng:create datasets
#tr:veri setlerini oluşturma
random_state = 42
n_samples = 1000 #eng:number of samples per cluster, tr:küme başına örnek sayısı
n_features = 10 #eng:number of features for each sample, tr:her bir örnek için özellik sayısı
n_classes = 2 #eng:number of classes (or labels), tr:sınıfların (veya etiketlerin) sayısı
#eng:Larger values introduce noise in the labels and make the classification task harder
#tr:Daha büyük değerler etiketlerde parazite neden olur ve sınıflandırmayı zorlaştırır
noise_moon = 0.3
noise_circle = 0.3
noise_class = 0.3
X,y = make_classification(n_samples = n_samples,
n_features = n_features,
n_classes = n_classes,
n_repeated = 0,#eng:number of duplicated features, tr:tekrar eden özellik sayısı
n_redundant = 0,#eng:number of redundant features, tr:anlamsız örnek sayısı
n_informative = n_features-1,#eng:number of informative features, tr:bilgilendirici özelliklerin sayısı
random_state = random_state,
n_clusters_per_class = 1,#eng:number of clusters per class, tr:sınıf başına küme sayısı
flip_y = noise_class)
data = pd.DataFrame(X)
data["target"] = y
plt.figure()
sns.scatterplot(x = data.iloc[:,0], y = data.iloc[:,1], hue = "target", data = data ) #eng:visualization, tr:görselleştirelim
data_classification = (X,y)
moon = make_moons(n_samples = n_samples, noise = noise_moon, random_state = random_state)
#data = pd.DataFrame(moon[0])
#data["target"] = moon[1]
#plt.figure()
#sns.scatterplot(x = data.iloc[:,0], y = data.iloc[:,1], hue = "target", data = data ) #eng:visualization, tr:görselleştirelim
circle = make_circles(n_samples = n_samples, factor = 0.1, noise = noise_circle, random_state = random_state)
#data = pd.DataFrame(circle[0])
#data["target"] = circle[1]
#plt.figure()
#sns.scatterplot(x = data.iloc[:,0], y = data.iloc[:,1], hue = "target", data = data ) #eng:visualization, tr:görselleştirelim
datasets = [moon, circle]
# Basic Classifiers : KNN, SVM, DT
n_estimators = 10 #♀eng:number of trees in the forest, tr:ağaç sayısı
svc = SVC()
knn = KNeighborsClassifier(n_neighbors = 15)
dt = DecisionTreeClassifier(random_state = random_state, max_depth = 2)
rf = RandomForestClassifier(n_estimators = n_estimators, random_state = random_state, max_depth = 2)
ada = AdaBoostClassifier(base_estimator = dt, n_estimators = n_estimators, random_state = random_state)
v1 = VotingClassifier(estimators = [('svc',svc),('knn',knn),('dt',dt),('rf',rf),('ada',ada)])
names = ["SVC", "KNN", "Decision Tree", "Random Forest", "AdaBoost", "V1"]
classifiers = [svc, knn, dt, rf, ada, v1]
h=0.2 #eng:resolution, tr:çözünürlük
i = 1
figure = plt.figure(figsize=(18, 6))
#eng:Training of algorithms and visualization of results
#tr: Algoritmaların eğitimi ve sonuçların görselleştirilmesi
for ds_cnt, ds in enumerate(datasets): #datasets --> circle and moon , ds_cnt --> index
#eng: preprocess dataset, split into training and test part
#tr: veri setinin ön işlemesi, eğitim ve teste bölünür
X, y = ds
X = RobustScaler().fit_transform(X)#eng:Scale features using statistics that are robust to outliers, tr:Aykırı değerlerden etkilenmeden öznitelik ölçekleme yapılması
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4, random_state=random_state)
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
#meshgrid --> eng:used to create a rectangular grid out of two given one-dimensional arrays representing the Cartesian indexing or Matrix indexing
#tr: Kartezyen indekslemeyi veya Matris indekslemeyi temsil eden iki tek boyutlu diziden dikdörtgen bir ızgara oluşturmak için kullanılır
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
#eng:colors for visualization ,tr:görselleştirme renkleri
cm = plt.cm.RdBu #eng:visualization tr:
cm_bright = ListedColormap(['#FF0000', '#0000FF'])
ax = plt.subplot(len(datasets), len(classifiers) + 1, i) # len(datasets) : row(satır), len(classifiers) +1 : column(sütun)
if ds_cnt == 0:
ax.set_title("Input data")
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,edgecolors='k') #eng:visualization, tr:görselleştirelim
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6,marker = '^', edgecolors='k') #eng:visualization, tr:görselleştirelim
ax.set_xticks(())
ax.set_yticks(())
i += 1
print("Dataset # {}".format(ds_cnt))
# classifiers : KNN , SVC , DT
for name, clf in zip(names, classifiers):
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
print("{}: test set score: {} ".format(name, score))
score_train = clf.score(X_train, y_train)
print("{}: train set score: {} ".format(name, score_train))
print()
#eng:The hasattr() method returns true if an object has the given named attribute and false if it does not.
#tr: Hasattr () yöntemi, bir nesne belirtilen adlandırılmış özelliğe sahipse true, yoksa false döndürür.
if hasattr(clf, "decision_function"):
#ravel --> eng: Return a contiguous flattened array, tr:Bitişik düzleştirilmiş bir dizi döndürür
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])#np.c --> eng:concatenation , tr: birleştirme
else:
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
# eng :Put the result into a color plot, tr:Sonucu bir renk grafiğine koyuyoruz
Z = Z.reshape(xx.shape)
ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)
#eng:Plot the training points, tr:Eğitim noktalarını belirliyoruz
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,
edgecolors='k')
#eng:Plot the testing points, tr:Test noktalarını belirliyoruz
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,marker = '^',
edgecolors='white', alpha=0.6)
ax.set_xticks(())
ax.set_yticks(())
if ds_cnt == 0:
ax.set_title(name)
score = score*100
ax.text(xx.max() - .3, yy.min() + .3, ('%.1f' % score),
size=15, horizontalalignment='right')
i += 1
print("-------------------------------------")
plt.tight_layout()
plt.show()
def make_classify(dc, clf, name):
x, y = dc
x = RobustScaler().fit_transform(x)#eng:Scale features using statistics that are robust to outliers, tr:Aykırı değerlerden etkilenmeden öznitelik ölçekleme yapılması
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=.4, random_state=random_state)
for name, clf in zip(names, classifiers):
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
print("{}: test set score: {} ".format(name, score))
score_train = clf.score(X_train, y_train)
print("{}: train set score: {} ".format(name, score_train))
print()
print("Dataset # 2")
make_classify(data_classification, classifiers,names)