-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbfs.cu
369 lines (304 loc) · 12.3 KB
/
bfs.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
/* References:
*
* Harish, Pawan, and P. J. Narayanan.
* "Accelerating large graph algorithms on the GPU using CUDA."
* International conference on high-performance computing.
* Springer, Berlin, Heidelberg, 2007.
*
* Hong, Sungpack, et al.
* "Accelerating CUDA graph algorithms at maximum warp."
* Acm Sigplan Notices 46.8 (2011): 267-276.
*
* Lifeng Nai, Yinglong Xia, Ilie G. Tanase, Hyesoon Kim, and Ching-Yung Lin.
* GraphBIG: Understanding Graph Computing in the Context of Industrial Solutions,
* In the proccedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC),
* Nov. 2015
*
*/
#include "helper_emogi.h"
#define MYINFINITY 0xFFFFFFFF
#define MEM_ALIGN MEM_ALIGN_64
typedef uint64_t EdgeT;
__global__ void kernel_baseline(uint32_t *label, const uint32_t level, const uint64_t vertex_count, const uint64_t *vertexList, const EdgeT *edgeList, bool *changed) {
const uint64_t tid = blockDim.x * BLOCK_SIZE * blockIdx.y + blockDim.x * blockIdx.x + threadIdx.x;
if(tid < vertex_count && label[tid] == level) {
const uint64_t start = vertexList[tid];
const uint64_t end = vertexList[tid+1];
for(uint64_t i = start; i < end; i++) {
const EdgeT next = edgeList[i];
if(label[next] == MYINFINITY) {
label[next] = level + 1;
*changed = true;
}
}
}
}
__global__ void kernel_coalesce(uint32_t *label, const uint32_t level, const uint64_t vertex_count, const uint64_t *vertexList, const EdgeT *edgeList, bool *changed) {
const uint64_t tid = blockDim.x * BLOCK_SIZE * blockIdx.y + blockDim.x * blockIdx.x + threadIdx.x;
const uint64_t warpIdx = tid >> WARP_SHIFT;
const uint64_t laneIdx = tid & ((1 << WARP_SHIFT) - 1);
if(warpIdx < vertex_count && label[warpIdx] == level) {
const uint64_t start = vertexList[warpIdx];
const uint64_t shift_start = start & MEM_ALIGN;
const uint64_t end = vertexList[warpIdx+1];
for(uint64_t i = shift_start + laneIdx; i < end; i += WARP_SIZE) {
if (i >= start) {
const EdgeT next = edgeList[i];
if(label[next] == MYINFINITY) {
label[next] = level + 1;
*changed = true;
}
}
}
}
}
__global__ void kernel_coalesce_chunk(uint32_t *label, const uint32_t level, const uint64_t vertex_count, const uint64_t *vertexList, const EdgeT *edgeList, bool *changed) {
const uint64_t tid = blockDim.x * BLOCK_SIZE * blockIdx.y + blockDim.x * blockIdx.x + threadIdx.x;
const uint64_t warpIdx = tid >> WARP_SHIFT;
const uint64_t laneIdx = tid & ((1 << WARP_SHIFT) - 1);
const uint64_t chunkIdx = warpIdx * CHUNK_SIZE;
uint64_t chunk_size = CHUNK_SIZE;
if((chunkIdx + CHUNK_SIZE) > vertex_count) {
if ( vertex_count > chunkIdx )
chunk_size = vertex_count - chunkIdx;
else
return;
}
for(uint32_t i = chunkIdx; i < chunk_size + chunkIdx; i++) {
if(label[i] == level) {
const uint64_t start = vertexList[i];
const uint64_t shift_start = start & MEM_ALIGN;
const uint64_t end = vertexList[i+1];
for(uint64_t j = shift_start + laneIdx; j < end; j += WARP_SIZE) {
if (j >= start) {
const EdgeT next = edgeList[j];
if(label[next] == MYINFINITY) {
label[next] = level + 1;
*changed = true;
}
}
}
}
}
}
int main(int argc, char *argv[]) {
std::ifstream file;
std::string vertex_file, edge_file;
std::string filename;
bool changed_h, *changed_d, no_src = false;
int c, num_run = 1, arg_num = 0, device = 0;
impl_type type;
mem_type mem;
uint32_t *label_d, level, zero, iter;
uint64_t *vertexList_h, *vertexList_d;
EdgeT *edgeList_h, *edgeList_d;
uint64_t vertex_count, edge_count, vertex_size, edge_size;
uint64_t typeT, src;
uint64_t numblocks, numthreads;
float milliseconds;
double avg_milliseconds;
cudaEvent_t start, end;
while ((c = getopt(argc, argv, "f:r:t:i:m:d:h")) != -1) {
switch (c) {
case 'f':
filename = optarg;
arg_num++;
break;
case 'r':
if (!no_src)
src = atoll(optarg);
arg_num++;
break;
case 't':
type = (impl_type)atoi(optarg);
arg_num++;
break;
case 'i':
no_src = true;
src = 0;
num_run = atoi(optarg);
arg_num++;
break;
case 'm':
mem = (mem_type)atoi(optarg);
arg_num++;
break;
case 'd':
device = atoi(optarg);
break;
case 'h':
printf("8-byte edge BFS\n");
printf("\t-f | input file name (must end with .bel)\n");
printf("\t-r | BFS root (unused when i > 1)\n");
printf("\t-t | type of BFS to run\n");
printf("\t | BASELINE = 0, COALESCE = 1, COALESCE_CHUNK = 2\n");
printf("\t-m | memory allocation\n");
printf("\t | GPUMEM = 0, UVM_READONLY = 1, UVM_DIRECT = 2\n");
printf("\t-i | number of iterations to run\n");
printf("\t-d | GPU device id (default=0)\n");
printf("\t-h | help message\n");
return 0;
case '?':
break;
default:
break;
}
}
if (arg_num < 4) {
printf("8-byte edge BFS\n");
printf("\t-f | input file name (must end with .bel)\n");
printf("\t-r | BFS root (unused when i > 1)\n");
printf("\t-t | type of BFS to run\n");
printf("\t | BASELINE = 0, COALESCE = 1, COALESCE_CHUNK = 2\n");
printf("\t-m | memory allocation\n");
printf("\t | GPUMEM = 0, UVM_READONLY = 1, UVM_DIRECT = 2\n");
printf("\t-i | number of iterations to run\n");
printf("\t-d | GPU device id (default=0)\n");
printf("\t-h | help message\n");
return 0;
}
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&end));
vertex_file = filename + ".col";
edge_file = filename + ".dst";
std::cout << filename << std::endl;
// Read files
file.open(vertex_file.c_str(), std::ios::in | std::ios::binary);
if (!file.is_open()) {
fprintf(stderr, "Vertex file open failed\n");
exit(1);
}
file.read((char*)(&vertex_count), 8);
file.read((char*)(&typeT), 8);
vertex_count--;
printf("Vertex: %lu, ", vertex_count);
vertex_size = (vertex_count+1) * sizeof(uint64_t);
vertexList_h = (uint64_t*)malloc(vertex_size);
file.read((char*)vertexList_h, vertex_size);
file.close();
file.open(edge_file.c_str(), std::ios::in | std::ios::binary);
if (!file.is_open()) {
fprintf(stderr, "Edge file open failed\n");
exit(1);
}
file.read((char*)(&edge_count), 8);
file.read((char*)(&typeT), 8);
printf("Edge: %lu\n", edge_count);
fflush(stdout);
edge_size = edge_count * sizeof(EdgeT);
edgeList_h = NULL;
// Allocate memory for GPU
checkCudaErrors(cudaMalloc((void**)&vertexList_d, vertex_size));
checkCudaErrors(cudaMalloc((void**)&label_d, vertex_count * sizeof(uint32_t)));
checkCudaErrors(cudaMalloc((void**)&changed_d, sizeof(bool)));
switch (mem) {
case GPUMEM:
edgeList_h = (EdgeT*)malloc(edge_size);
file.read((char*)edgeList_h, edge_size);
checkCudaErrors(cudaMalloc((void**)&edgeList_d, edge_size));
break;
case UVM_READONLY:
checkCudaErrors(cudaMallocManaged((void**)&edgeList_d, edge_size));
file.read((char*)edgeList_d, edge_size);
checkCudaErrors(cudaMemAdvise(edgeList_d, edge_size, cudaMemAdviseSetReadMostly, device));
break;
case UVM_DIRECT:
checkCudaErrors(cudaMallocManaged((void**)&edgeList_d, edge_size));
file.read((char*)edgeList_d, edge_size);
checkCudaErrors(cudaMemAdvise(edgeList_d, edge_size, cudaMemAdviseSetAccessedBy, device));
break;
}
file.close();
printf("Allocation finished\n");
fflush(stdout);
// Initialize values
checkCudaErrors(cudaMemcpy(vertexList_d, vertexList_h, vertex_size, cudaMemcpyHostToDevice));
if (mem == GPUMEM)
checkCudaErrors(cudaMemcpy(edgeList_d, edgeList_h, edge_size, cudaMemcpyHostToDevice));
numthreads = BLOCK_SIZE;
switch (type) {
case BASELINE:
numblocks = ((vertex_count + numthreads) / numthreads);
break;
case COALESCE:
numblocks = ((vertex_count * WARP_SIZE + numthreads) / numthreads);
break;
case COALESCE_CHUNK:
numblocks = ((vertex_count * (WARP_SIZE / CHUNK_SIZE) + numthreads) / numthreads);
break;
default:
fprintf(stderr, "Invalid type\n");
exit(1);
break;
}
dim3 blockDim(BLOCK_SIZE, (numblocks+BLOCK_SIZE)/BLOCK_SIZE);
avg_milliseconds = 0.0f;
printf("Initialization done\n");
fflush(stdout);
// Set root
for (int i = 0; i < num_run; i++) {
zero = 0;
checkCudaErrors(cudaMemset(label_d, 0xFF, vertex_count * sizeof(uint32_t)));
checkCudaErrors(cudaMemcpy(&label_d[src], &zero, sizeof(uint32_t), cudaMemcpyHostToDevice));
level = 0;
iter = 0;
checkCudaErrors(cudaEventRecord(start, 0));
// Run BFS
do {
changed_h = false;
checkCudaErrors(cudaMemcpy(changed_d, &changed_h, sizeof(bool), cudaMemcpyHostToDevice));
switch (type) {
case BASELINE:
kernel_baseline<<<blockDim, numthreads>>>(label_d, level, vertex_count, vertexList_d, edgeList_d, changed_d);
break;
case COALESCE:
kernel_coalesce<<<blockDim, numthreads>>>(label_d, level, vertex_count, vertexList_d, edgeList_d, changed_d);
break;
case COALESCE_CHUNK:
kernel_coalesce_chunk<<<blockDim, numthreads>>>(label_d, level, vertex_count, vertexList_d, edgeList_d, changed_d);
break;
default:
fprintf(stderr, "Invalid type\n");
exit(1);
break;
}
iter++;
level++;
checkCudaErrors(cudaMemcpy(&changed_h, changed_d, sizeof(bool), cudaMemcpyDeviceToHost));
} while(changed_h);
checkCudaErrors(cudaEventRecord(end, 0));
checkCudaErrors(cudaEventSynchronize(end));
checkCudaErrors(cudaEventElapsedTime(&milliseconds, start, end));
printf("run %*d: ", 3, i);
printf("src %*lu, ", 12, src);
printf("iteration %*u, ", 3, iter);
printf("time %*f ms\n", 12, milliseconds);
fflush(stdout);
avg_milliseconds += (double)milliseconds;
src += vertex_count / num_run;
if (i < num_run - 1) {
EdgeT *edgeList_temp;
// Flush GPU page cache for each iteration by re-allocating UVM
switch (mem) {
case UVM_READONLY:
checkCudaErrors(cudaMallocManaged((void**)&edgeList_temp, edge_size));
memcpy(edgeList_temp, edgeList_d, edge_size);
checkCudaErrors(cudaFree(edgeList_d));
edgeList_d = edgeList_temp;
checkCudaErrors(cudaMemAdvise(edgeList_d, edge_size, cudaMemAdviseSetReadMostly, device));
break;
default:
break;
}
}
}
printf("Average run time %f ms\n", avg_milliseconds / num_run);
free(vertexList_h);
if (edgeList_h)
free(edgeList_h);
checkCudaErrors(cudaFree(vertexList_d));
checkCudaErrors(cudaFree(edgeList_d));
checkCudaErrors(cudaFree(label_d));
checkCudaErrors(cudaFree(changed_d));
return 0;
}