-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
468 lines (340 loc) · 10.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import random
import sqlite3
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras
from tqdm import tqdm
from os import listdir
from os.path import isfile, join
from callback import CustomCallback
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, LSTM, Dense
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
class Model:
__files = []
__transcations = []
__train_counter = 0
__validation_counter = 0
__test_counter = 0
def __is_file(self, path, file):
"""
Check if a partucular file exists in the particular path
Args:
path: path of the folder
file: filename
"""
return isfile(join(path, file))
def __is_code_list_available(self):
"""
Check of Code File List is available or not
Args:
"""
return self.__is_file(self.DATA_FOLDER, self.CODE_FILE_LIST)
def __is_sequences_db_available(self):
"""
Check of sequence db file is available or not
Args:
"""
return self.__is_file(self.DATA_FOLDER, self.SEQUENCE_DB)
def __return_files_and_folders(self, path):
"""
Returns all the files and folders present on a specific path
Args:
path: path name
"""
if random.randint(0,100) == 50:
print(f'Processing file {path}')
files = []
folders = []
directories = listdir(path)
for directory in directories:
file = self.__is_file(path, directory)
if file:
files.append(join(path, directory))
else:
folders.append(join(path, directory))
return files, folders
def __extract_files(self, path):
"""
Extracts every files present on the codebase
Args:
path: path name
"""
_files, _folders = self.__return_files_and_folders(path)
self.__files += _files
for folder in _folders:
self.__extract_files(folder)
def __filter_files(self):
"""
Filter all files and extracts only the c/c++ codes
Args:
"""
filtered_files = []
extensions = ['c', 'h', 'cpp', 'cc', 'c++', 'cp', 'cxx', 'ii', 'cxx']
for file in self.__files:
extension = file.split('/')[-1].split('.')[-1]
if extension in extensions:
filtered_files.append(file)
return filtered_files
def __generate_code_list_file(self):
"""
Generates list of code files and then filters only the c/c++ code files, And finally saves it in a seperate txt file
Args:
"""
self.__extract_files(self.DATA_FOLDER + "/chromium-master")
filtered_files = self.__filter_files()
with open(self.DATA_FOLDER + "/" + self.CODE_FILE_LIST, 'w') as f:
f.write("\n".join(filtered_files))
def __create_table(self, c):
"""
Creates a table for storing the data
Args:
c: cursor to the sqlite
"""
c.execute("CREATE TABLE IF NOT EXISTS code_sequences(sequence TEXT, next TEXT, state TEXT);")
def __transaction_bldr(self, sql, c):
"""
Transcation builder that stores the data in a batch
Args:
sql: sql query to add data
c: cursor to the sqlite
"""
self.__transcations.append(sql)
if len(self.__transcations) > 1000:
random.shuffle(self.__transcations)
c.execute("BEGIN TRANSACTION")
for transcation in self.__transcations:
try:
c.execute(transcation)
except Exception as ex:
print('Transaction fail ', ex)
print('SQL ', transcation)
c.execute("commit")
self.__transcations = []
def __process_data(self, data):
"""
Process data for inserting into db
Args:
data: data that needed to be process
"""
return data.replace("'", "''")
def __insert_data(self, sequence, next, state, c):
"""
Builds SQL query to save data into db
Args:
sequence: sequence to save into db
next: next character after the sequence
state: state of the data (trainining/validation/test data)
c: cursor to the sqlite db
"""
sql = f"INSERT INTO code_sequences(sequence, next, state) VALUES('{self.__process_data(sequence)}', '{self.__process_data(next)}', '{state}');"
self.__transaction_bldr(sql, c)
def __build_sequence_db(self):
"""
Building sequences to store into the db
Args:
"""
with open(self.DATA_FOLDER + "/" + self.CODE_FILE_LIST, "r") as f:
conn = sqlite3.connect(self.DATA_FOLDER + "/" + self.SEQUENCE_DB)
c = conn.cursor()
self.__create_table(c)
file = f.read()
files = file.split("\n")
for file in tqdm(files):
try:
with open(file, 'r') as f:
code = f.read()
n = len(code)
TRAIN_SIZE = int(n * 0.8)
VALIDATION_SIZE = int(n * 0.1) + TRAIN_SIZE
TEST_SIZE = int(n * 0.1) + TRAIN_SIZE + VALIDATION_SIZE
for k in range(n - self.SEQ_LENGTH):
seq = code[k:k + self.SEQ_LENGTH]
next = code[k + self.SEQ_LENGTH]
if k <= TRAIN_SIZE:
state = "tr"
elif k <= VALIDATION_SIZE:
state = "va"
else:
state = "te"
self.__insert_data(seq, next, state, c)
except Exception as ex:
print(ex)
def __one_hot(self, sequences, nexts):
"""
One Hot Encoding for the labels and coverts everything into numpy array
Args:
sequences: a batch of sequences
nexts: a batch of next characters
"""
y = np.zeros((self.BATCH_SIZE, 128), dtype=np.bool)
for i, sequence in enumerate(sequences):
if nexts[i] < 0 or nexts[i] > 128:
y[i, 97] = 1
else:
y[i, nexts[i]] = 1
return np.array(sequences), y
def __train_generator(self):
"""
Train Generator that generates a batch of data for the model
Args:
"""
while True:
conn = sqlite3.connect(self.DATA_FOLDER + "/" + self.SEQUENCE_DB)
c = conn.cursor()
sql = f"SELECT sequence, next FROM code_sequences WHERE state = 'tr' LIMIT {self.BATCH_SIZE} OFFSET {self.BATCH_SIZE * self.__train_counter}"
self.__train_counter += 1
c.execute(sql)
rows = c.fetchall()
sequences = []
nexts = []
for sequence, next in rows:
temp = []
for char in sequence:
temp.append(ord(char))
sequences.append(temp)
nexts.append(ord(next))
x,y = self.__one_hot(sequences, nexts)
assert x.shape == (self.BATCH_SIZE, 40), "Invalid dimension for Input X"
assert y.shape == (self.BATCH_SIZE, 128), "Invalid dimension for Output Y"
yield x, y
def __validation_generator(self):
"""
Validation Generator that generates a batch of data for the model
Args:
"""
while True:
conn = sqlite3.connect(self.DATA_FOLDER + "/" + self.SEQUENCE_DB)
c = conn.cursor()
sql = f"SELECT sequence, next FROM code_sequences WHERE state = 'va' LIMIT {self.BATCH_SIZE} OFFSET {self.BATCH_SIZE * self.__validation_counter}"
self.__validation_counter += 1
c.execute(sql)
rows = c.fetchall()
sequences = []
nexts = []
for sequence, next in rows:
temp = []
for char in sequence:
temp.append(ord(char))
sequences.append(temp)
nexts.append(ord(next))
x,y = self.__one_hot(sequences, nexts)
assert x.shape == (self.BATCH_SIZE, 40), "Invalid dimension for Input X"
assert y.shape == (self.BATCH_SIZE, 128), "Invalid dimension for Output Y"
yield x, y
def __test_generator(self):
"""
Test Generator that generates a batch of data for the model
Args:
"""
while True:
conn = sqlite3.connect(self.DATA_FOLDER + "/" + self.SEQUENCE_DB)
c = conn.cursor()
sql = f"SELECT sequence, next FROM code_sequences WHERE state = 'te' LIMIT {self.BATCH_SIZE} OFFSET {self.BATCH_SIZE * self.__test_counter}"
self.__test_counter += 1
c.execute(sql)
rows = c.fetchall()
sequences = []
nexts = []
for sequence, next in rows:
temp = []
for char in sequence:
temp.append(ord(char))
sequences.append(temp)
nexts.append(ord(next))
x,y = self.__one_hot(sequences, nexts)
assert x.shape == (self.BATCH_SIZE, 40), "Invalid dimension for Input X"
assert y.shape == (self.BATCH_SIZE, 128), "Invalid dimension for Output Y"
yield x, y
def generate_code_list(self, force=False):
"""
Generating a code list file
Args:
force: Forcefully generating a code list file
"""
if force:
print("Generating code list file...")
# Generating a code list file
self.__generate_code_list_file()
return
else:
# Check of code list file available?
code_list_available = self.__is_code_list_available()
if not code_list_available:
print("Generating code list file...")
# If there is no code list file, then generates a new code list file
self.__generate_code_list_file()
else:
print("Found existing code list file...")
def build_sequences(self, force):
"""
Method for generating sequences of text with the next character and storing it into sqlite db
Args:
"""
if force:
print("Generating sequences...")
# Generating sequecne db
self.__build_sequence_db()
else:
if self.__is_sequences_db_available():
print("Found existing sequence db file...")
else:
print("Generating sequences...")
# Generating sequecne db
self.__build_sequence_db()
def build_model(self):
train_g = self.__train_generator()
validation_g = self.__validation_generator()
test_g = self.__test_generator()
model = Sequential()
model.add(Embedding(self.VOCAB_SIZE, 128, input_length=self.SEQ_LENGTH))
model.add(LSTM(128))
model.add(Dense(128, activation='softmax'))
model.compile(loss="categorical_crossentropy", optimizer='adam', metrics=['accuracy'])
print(model.summary())
earlyStopping = EarlyStopping(monitor='val_loss',
patience=5,
mode='min',
restore_best_weights=True)
modelCheckpoint = ModelCheckpoint(self.DATA_FOLDER + "/model.{epoch:02d}-{val_loss:.2f}.h5")
predictCode = CustomCallback()
model.fit_generator(train_g,
steps_per_epoch=self.STEPS_PER_EPOCH,
epochs=self.EPOCHS,
validation_data=validation_g,
validation_steps=self.STEPS_PER_EPOCH_VALIDATION,
callbacks=[earlyStopping, modelCheckpoint, predictCode])
model.save(self.DATA_FOLDER + "/model.last.h5")
def __init__(self,
DATA_FOLDER='data',
CODE_FILE_LIST='code_list.txt',
SEQUENCE_DB="sequeces.db",
SEQ_LENGTH=40,
BATCH_SIZE=32,
VOCAB_SIZE=128,
STEPS_PER_EPOCH=None,
STEPS_PER_EPOCH_VALIDATION=None,
TRAIN_SIZE = 33274973,
VALIDATION_SIZE = 4150122,
TEST_SIZE = 3870306,
EPOCHS=5
):
# All the constants for the project
self.DATA_FOLDER = DATA_FOLDER
self.CODE_FILE_LIST = CODE_FILE_LIST
self.SEQUENCE_DB = SEQUENCE_DB
self.SEQ_LENGTH = SEQ_LENGTH
self.BATCH_SIZE = BATCH_SIZE
self.VOCAB_SIZE = VOCAB_SIZE
self.TRAIN_SIZE = TRAIN_SIZE
self.VALIDATION_SIZE = VALIDATION_SIZE
self.TEST_SIZE = TEST_SIZE,
self.EPOCHS = EPOCHS
if STEPS_PER_EPOCH:
self.STEPS_PER_EPOCH = STEPS_PER_EPOCH
else:
self.STEPS_PER_EPOCH = self.TRAIN_SIZE // self.BATCH_SIZE
if STEPS_PER_EPOCH_VALIDATION:
self.STEPS_PER_EPOCH_VALIDATION = STEPS_PER_EPOCH_VALIDATION
else:
self.STEPS_PER_EPOCH_VALIDATION = self.VALIDATION_SIZE // self.BATCH_SIZE