forked from kuanghuei/clean-net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
154 lines (129 loc) · 6.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# ---------------------------------------------------------------
# CleanNet implementation based on https://arxiv.org/abs/1711.07131.
# "CleanNet: Transfer Learning for Scalable Image Classifier Training with Label Noise"
# Kuang-Huei Lee, Xiaodong He, Lei Zhang, Linjun Yang
#
# Writen by Kuang-Huei Lee, 2018
# Licensed under the MSR-LA Full Rights License [see license.txt]
# ---------------------------------------------------------------
"""CleanNet model"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
class CleanNet(object):
"""CleanNet model"""
def __init__(self, num_ref, img_dim, embed_norm, dropout_rate=0.0, weight_decay=0.0):
"""Basic setup
Args:
num_ref: number of reference embeddings
img_dim: dimension of image feature
embed_norm: type of embedding normalization to use
dropout_rate: drop-out rate
weight_decay: l2 regularization
"""
self.num_ref = num_ref # n_cluster
self.img_dim = img_dim #n_feature
self.embed_norm = embed_norm
self.keep_prob = 1.0 - dropout_rate
self.weight_decay = weight_decay
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.reference = tf.placeholder(tf.float32, shape=(None, self.num_ref, self.img_dim), name="reference")
self.query = tf.placeholder(tf.float32, shape=(None, self.img_dim), name="query")
def forward(self, is_training):
"""CleanNet forward pass
Args:
is_training: True - training model / False - inference model
Returns:
phi_s: reference set vector
v_q: query image feature (batch_size, img_dim)
phi_q: query vector
v_qr: reconstructed v_q
"""
# normalization
if self.embed_norm == 'log':
v_q = tf.log(self.query + 1.0)
v_S = tf.log(self.reference + 1.0)
elif self.embed_norm == 'l2norm':
v_q = tf.nn.l2_normalize(self.query, 1)
v_S = tf.nn.l2_normalize(self.reference, 2)
elif self.embed_norm == 'no_norm':
v_q = self.query
v_S = self.reference
else:
raise NotImplementedError
# encode query
phi_q, v_qr = self.query_encoder(v_q, is_training=is_training)
# encode reference set
phi_s = self.ref_set_encoder(v_S, is_training=is_training)
return phi_s, v_q, phi_q, v_qr
def query_encoder(self, v_q, is_training=True, scope="query_encoder"):
"""Encode query image feature
Args:
v_q: query image feature (batch_size, img_dim)
is_training: True - training model / False - inference model
Returns:
phi_q: query vector
v_qr: reconstructed v_q
"""
with tf.variable_scope(scope):
h1 = tf.contrib.layers.fully_connected(inputs=v_q,
num_outputs=256,
activation_fn=tf.nn.tanh,
weights_regularizer=tf.contrib.layers.l2_regularizer(self.weight_decay),
biases_initializer=tf.zeros_initializer())
phi_q = tf.contrib.layers.fully_connected(inputs=h1,
num_outputs=128,
activation_fn=tf.nn.tanh,
weights_regularizer=tf.contrib.layers.l2_regularizer(self.weight_decay),
biases_initializer=tf.zeros_initializer())
h2 = tf.contrib.layers.fully_connected(inputs=phi_q,
num_outputs=256,
activation_fn=tf.nn.tanh,
weights_regularizer=tf.contrib.layers.l2_regularizer(self.weight_decay),
biases_initializer=tf.zeros_initializer())
v_qr = tf.contrib.layers.fully_connected(inputs=h2,
num_outputs=self.img_dim,
activation_fn=tf.nn.tanh,
weights_regularizer=tf.contrib.layers.l2_regularizer(self.weight_decay),
biases_initializer=tf.zeros_initializer())
return phi_q, v_qr
def ref_set_encoder(self, v_S, is_training=True, scope="ref_set_encoder"):
"""Encode reference image features
Args:
v_S: query image feature (batch_size, img_dim)
is_training: True - training model / False - inference model
Returns:
phi_s: reference set vector
"""
with tf.variable_scope(scope) as scope:
context = tf.get_variable(name='context',
shape=[256],
initializer=tf.contrib.layers.xavier_initializer(),
dtype=tf.float32)
h0 = tf.contrib.layers.fully_connected(inputs=v_S,
num_outputs=512,
activation_fn=tf.nn.tanh,
weights_regularizer=tf.contrib.layers.l2_regularizer(self.weight_decay),
biases_initializer=tf.zeros_initializer())
if is_training:
h0 = tf.nn.dropout(h0, keep_prob=self.keep_prob)
h = tf.contrib.layers.fully_connected(inputs=h0,
num_outputs=256,
activation_fn=tf.nn.tanh,
weights_regularizer=tf.contrib.layers.l2_regularizer(self.weight_decay),
biases_initializer=tf.zeros_initializer())
u = tf.contrib.layers.fully_connected(inputs=h,
num_outputs=256,
activation_fn=tf.nn.tanh,
weights_regularizer=tf.contrib.layers.l2_regularizer(self.weight_decay),
biases_initializer=tf.zeros_initializer())
attn = tf.reduce_sum(tf.multiply(u, context), axis=2, keepdims=True)
alpha = tf.nn.softmax(attn, axis=1)
attended_set_vector = tf.reduce_sum(tf.multiply(h, alpha), axis=1)
phi_s = tf.contrib.layers.fully_connected(inputs=attended_set_vector,
num_outputs=128,
activation_fn=tf.nn.tanh,
weights_regularizer= tf.contrib.layers.l2_regularizer(self.weight_decay),
biases_initializer=tf.zeros_initializer())
return phi_s