-
Notifications
You must be signed in to change notification settings - Fork 115
/
HEPML.bib
802 lines (743 loc) · 27.9 KB
/
HEPML.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
# HEPML Papers
% April 21, 2020
@article{Romao:2020ojy,
author = "Romao, M. Crispim and Castro, N.F. and Milhano, J.G. and Pedro, R. and Vale, T.",
archivePrefix = "arXiv",
eprint = "2004.09360",
month = "4",
primaryClass = "hep-ph",
title = "{Use of a Generalized Energy Mover's Distance in the Search for Rare Phenomena at Colliders}",
year = "2020"
}
% March 13, 2020
@article{Kanwar:2003.06413,
key = "1785309",
author = "Kanwar, Gurtej and Albergo, Michael S. and Boyda, Denis
and Cranmer, Kyle and Hackett, Daniel C. and Racanière,
Sébastien and Rezende, Danilo Jimenez and Shanahan,
Phiala E.",
title = "{Equivariant flow-based sampling for lattice gauge
theory}",
year = "2020",
eprint = "2003.06413",
archivePrefix = "arXiv",
primaryClass = "hep-lat",
reportNumber = "MIT-CTP/5181",
SLACcitation = "%%CITATION = ARXIV:2003.06413;%%"
}
% February 11, 2020
@article{Hollingsworth:2020kjg,
author = "Hollingsworth, Jacob and Whiteson, Daniel",
title = "{Resonance Searches with Machine Learned Likelihood
Ratios}",
year = "2020",
eprint = "2002.04699",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
SLACcitation = "%%CITATION = ARXIV:2002.04699;%%"
}
% February 3, 2020
@article{Strong:2020mge,
author = "Strong, Giles Chatham",
title = "{On the impact of modern deep-learning techniques to the
performance and time-requirements of classification models
in experimental high-energy physics}",
year = "2020",
eprint = "2002.01427",
archivePrefix = "arXiv",
primaryClass = "physics.data-an",
SLACcitation = "%%CITATION = ARXIV:2002.01427;%%"
}
% December 9, 2019
@article{Romao:2019dvs,
author = "Romão Crispim, M. and Castro, N.F. and Pedro, R. and Vale, T.",
archivePrefix = "arXiv",
doi = "10.1103/PhysRevD.101.035042",
eprint = "1912.04220",
journal = "Phys.\ Rev.\ D",
number = "3",
pages = "035042",
primaryClass = "hep-ph",
title = "{Transferability of Deep Learning Models in Searches for New Physics at Colliders}",
volume = "101",
year = "2020"
}
% November 20, 2019
@article{Andreassen:2019cjw,
author = "Andreassen, Anders and Komiske, Patrick T. and Metodiev,
Eric M. and Nachman, Benjamin and Thaler, Jesse",
title = "{OmniFold: A Method to Simultaneously Unfold All
Observables}",
year = "2019",
eprint = "1911.09107",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
reportNumber = "MIT-CTP 5155",
SLACcitation = "%%CITATION = ARXIV:1911.09107;%%"
}
% October 18, 2019
@article{Nachman:2019yfl,
author = "Nachman, Benjamin and Shimmin, Chase",
title = "{AI Safety for High Energy Physics}",
year = "2019",
eprint = "1910.08606",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
SLACcitation = "%%CITATION = ARXIV:1910.08606;%%"
}
% May 28, 2019
@article{Borisyak:2019vbz,
author = "Borisyak, Maxim and Kazeev, Nikita",
title = "{Machine Learning on data with sPlot background
subtraction}",
year = "2019",
eprint = "1905.11719",
archivePrefix = "arXiv",
primaryClass = "cs.LG",
SLACcitation = "%%CITATION = ARXIV:1905.11719;%%"
}
% May 19, 2019
@article{Caron:2019xkx,
author = "Caron, Sascha and Heskes, Tom and Otten, Sydney and
Stienen, Bob",
title = "{Constraining the Parameters of High-Dimensional Models
with Active Learning}",
journal = "Eur. Phys. J.",
volume = "C79",
year = "2019",
number = "11",
pages = "944",
doi = "10.1140/epjc/s10052-019-7437-5",
eprint = "1905.08628",
archivePrefix = "arXiv",
primaryClass = "cs.LG",
SLACcitation = "%%CITATION = ARXIV:1905.08628;%%"
}
% March 6, 2019
@article{DiSipio:2019imz,
author = "Di Sipio, Riccardo and Faucci Giannelli, Michele and
Ketabchi Haghighat, Sana and Palazzo, Serena",
title = "{DijetGAN: A Generative-Adversarial Network Approach for
the Simulation of QCD Dijet Events at the LHC}",
year = "2019",
eprint = "1903.02433",
archivePrefix = "arXiv",
primaryClass = "hep-ex",
SLACcitation = "%%CITATION = ARXIV:1903.02433;%%"
}
% February 19, 2019
@article{Datta:2019,
key = "1720832",
author = "Datta, Kaustuv and Larkoski, Andrew and Nachman,
Benjamin",
title = "{Automating the Construction of Jet Observables with
Machine Learning}",
year = "2019",
eprint = "1902.07180",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
SLACcitation = "%%CITATION = ARXIV:1902.07180;%%"
}
% August 22, 2018
@article{Adams:2018bvi,
author = "Adams, C. and others",
title = "{Deep neural network for pixel-level electromagnetic
particle identification in the MicroBooNE liquid argon
time projection chamber}",
collaboration = "MicroBooNE",
journal = "Phys. Rev.",
volume = "D99",
year = "2019",
number = "9",
pages = "092001",
doi = "10.1103/PhysRevD.99.092001",
eprint = "1808.07269",
archivePrefix = "arXiv",
primaryClass = "hep-ex",
reportNumber = "FERMILAB-PUB-18-231-ND",
SLACcitation = "%%CITATION = ARXIV:1808.07269;%%"
}
% August 2, 2018
@article{Stoye:2018ovl,
author = "Stoye, Markus and Brehmer, Johann and Louppe, Gilles and
Pavez, Juan and Cranmer, Kyle",
title = "{Likelihood-free inference with an improved cross-entropy
estimator}",
year = "2018",
eprint = "1808.00973",
archivePrefix = "arXiv",
primaryClass = "stat.ML",
SLACcitation = "%%CITATION = ARXIV:1808.00973;%%"
}
% August 2, 2018
@article{Bourgeois:2018nvk,
author = "Bourgeois, Dylan and Fitzpatrick, Conor and Stahl,
Sascha",
title = "{Using holistic event information in the trigger}",
year = "2018",
eprint = "1808.00711",
archivePrefix = "arXiv",
primaryClass = "physics.ins-det",
reportNumber = "LHCb-PUB-2018-010",
SLACcitation = "%%CITATION = ARXIV:1808.00711;%%"
}
% July 31, 2018
@article{Andrews:2018nwy,
author = "Andrews, Michael and Paulini, Manfred and Gleyzer, Sergei
and Poczos, Barnabas",
title = "{End-to-End Physics Event Classification with the CMS
Open Data: Applying Image-based Deep Learning on Detector
Data to Directly Classify Collision Events at the LHC}",
year = "2018",
eprint = "1807.11916",
archivePrefix = "arXiv",
primaryClass = "hep-ex",
SLACcitation = "%%CITATION = ARXIV:1807.11916;%%"
}
% July 27, 2018
@article{Lin:2018cin,
author = "Lin, Joshua and Freytsis, Marat and Moult, Ian and
Nachman, Benjamin",
title = "{Boosting $H\to b\bar b$ with Machine Learning}",
year = "2018",
eprint = "1807.10768",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
SLACcitation = "%%CITATION = ARXIV:1807.10768;%%"
}
% July 8, 2018
@article{Albertsson:2018maf,
author = "Albertsson, Kim and others",
title = "{Machine Learning in High Energy Physics Community White Paper}",
year = "2018",
eprint = "1807.02876",
archivePrefix = "arXiv",
primaryClass = "physics.comp-ph",
reportNumber = "FERMILAB-PUB-18-318-CD-DI-PPD",
SLACcitation = "%%CITATION = ARXIV:1807.02876;%%"
}
% June 29, 2018
@article{Guest:2018yhq,
author = "Guest, Dan and Cranmer, Kyle and Whiteson, Daniel",
title = "{Deep Learning and its Application to LHC Physics}",
year = "2018",
eprint = "1806.11484",
archivePrefix = "arXiv",
primaryClass = "hep-ex",
SLACcitation = "%%CITATION = ARXIV:1806.11484;%%"
}
% April 30, 2018
@article{Brehmer:2018kdj,
author = "Brehmer, Johann and Cranmer, Kyle and Louppe, Gilles and
Pavez, Juan",
title = "{Constraining Effective Field Theories with Machine
Learning}",
year = "2018",
eprint = "1805.00013",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
SLACcitation = "%%CITATION = ARXIV:1805.00013;%%"
}
% April 30, 2018
@article{Brehmer:2018eca,
author = "Brehmer, Johann and Cranmer, Kyle and Louppe, Gilles and
Pavez, Juan",
title = "{A Guide to Constraining Effective Field Theories with
Machine Learning}",
year = "2018",
eprint = "1805.00020",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
SLACcitation = "%%CITATION = ARXIV:1805.00020;%%"
}
% December 19, 2017
@article{Sirunyan:2017ezt,
author = "Sirunyan, Albert M and others",
title = "{Identification of heavy-flavour jets with the CMS
detector in pp collisions at 13 TeV}",
collaboration = "CMS",
year = "2017",
eprint = "1712.07158",
archivePrefix = "arXiv",
primaryClass = "physics.ins-det",
reportNumber = "CMS-BTV-16-002, CERN-EP-2017-326",
SLACcitation = "%%CITATION = ARXIV:1712.07158;%%"
}
% December 8, 2017
@conference{Estrade:DLPS2017,
author = "Victor Estrade and Cecile Germain and Isabelle Guyon and David Rousseau",
title = "{Adversarial learning to eliminate systematic errors: a case study
in High Energy Physics}",
booktitle = "{Proceedings of the Deep Learning for Physical Sciences Workshop at NIPS (2017)}",
year = "2017",
url = "{https://dl4physicalsciences.github.io/files/nips_dlps_2017_1.pdf}"
}
% December 8, 2017
@conference{Weitekamp:DLPS2017,
author = "Daniel Weitekamp III and Thong Q. Nguyen and Dustin Anderson and
Roberto Castello and Maurizio Pierini and Maria Spiropulu and Jean-Roch Vlimant",
title = "{Deep topology classifiers for a more efficient trigger selection at the LHC}",
booktitle = "{Proceedings of the Deep Learning for Physical Sciences Workshop at NIPS (2017)}",
year = "2017",
url = "{https://dl4physicalsciences.github.io/files/nips_dlps_2017_3.pdf}"
}
% December 8, 2017
@conference{Hertel:DLPS2017,
author = "Lars Hertel and Lingge Li and Pierre Baldi and Jianming Bian",
title = "{Convolutional Neural Networks for Electron Neutrino and Electron
Shower Energy Reconstruction in the NO$\nu$A Detectors}",
booktitle = "{Proceedings of the Deep Learning for Physical Sciences Workshop at NIPS (2017)}",
year = "2017",
url = "{https://dl4physicalsciences.github.io/files/nips_dlps_2017_7.pdf}"
}
% December 8, 2017
@conference{Stoye:DLPS2017,
author = "Markus Stoye and Jan Kieseler and Mauro Verzetti and Huilin Qu and
Loukas Gouskos and Anna Stakia and {CMS Collaboration}",
title = "{DeepJet: Generic physics object based jet multiclass classification
for LHC experiments}",
booktitle = "{Proceedings of the Deep Learning for Physical Sciences Workshop at NIPS (2017)}",
year = "2017",
url = "{https://dl4physicalsciences.github.io/files/nips_dlps_2017_10.pdf}"
}
% December 8, 2017
@conference{Hooberman:DLPS2017,
author = "Benjamin Hooberman and Amir Farbin and Gulrukh Khattak and Vit{\'o}ria Pacela
and Maurizio Pierini and Jean-Roch Vlimant and Maria Spiropulu and Wei Wei and Matt Zhang
and Sofia Vallecorsa",
title = "{Calorimetry with Deep Learning: Particle Classification, Energy Regression,
and Simulation for High-Energy Physics}",
booktitle = "{Proceedings of the Deep Learning for Physical Sciences Workshop at NIPS (2017)}",
year = "2017",
url = "{https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf}"
}
% December 8, 2017
@conference{Paganini:DLPS2017,
author = "Paganini, Michela and de Oliveira, Luke and Nachman,
Benjamin",
title = "{Survey of Machine Learning Techniques for High Energy
Electromagnetic Shower Classification}",
booktitle = "{Proceedings of the Deep Learning for Physical Sciences Workshop at NIPS (2017)}",
year = "2017",
url = "{https://dl4physicalsciences.github.io/files/nips_dlps_2017_24.pdf}"
}
% December 8, 2017
@conference{Oliveira:DLPS2017,
author = "de Oliveira, Luke and Paganini, Michela and Nachman, Benjamin",
title = "{Tips and Tricks for Training GANs with Physics Constraints}",
booktitle = "{Proceedings of the Deep Learning for Physical Sciences Workshop at NIPS (2017)}",
year = "2017",
url = "{https://dl4physicalsciences.github.io/files/nips_dlps_2017_26.pdf}"
}
% December 8, 2017
@conference{Farrell:DLPS2017,
author = "Steven Farrell and Paolo Calafiura and Mayur Mudigonda and Prabhat
and Dustin Anderson and Josh Bendavid and Maria Spiropoulou and Jean-Roch Vlimant
and Stephan Zheng and Giuseppe Cerati and Lindsey Gray and Jim Kowalkowski
and Panagiotis Spentzouris and Aristeidis Tsaris and Daniel Zurawski",
title = "{Particle Track Reconstruction with Deep Learning}",
booktitle = "{Proceedings of the Deep Learning for Physical Sciences Workshop at NIPS (2017)}",
year = "2017",
url = "{https://dl4physicalsciences.github.io/files/nips_dlps_2017_28.pdf}"
}
% December 8, 2017
@conference{Henrion:DLPS2017,
author = "Isaac Henrion and Kyle Cranmer and Joan Bruna and Kyunghyun Cho
and Johann Brehmer and Gilles Louppe and Gaspar Rochette",
title = "{Neural Message Passing for Jet Physics}",
booktitle = "{Proceedings of the Deep Learning for Physical Sciences Workshop at NIPS (2017)}",
year = "2017",
url = "{https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf}"
}
% November 7, 2017
@article{Cheng:2017rdo,
author = "Cheng, Taoli",
title = "{Recursive Neural Networks in Quark/Gluon Tagging}",
year = "2017",
eprint = "1711.02633",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
SLACcitation = "%%CITATION = ARXIV:1711.02633;%%"
}
% September 28, 2017
@article{Chang:2017kvc,
author = "Chang, Spencer and Cohen, Timothy and Ostdiek, Bryan",
title = "{What is the Machine Learning?}",
journal = "Phys. Rev.",
volume = "D97",
year = "2018",
number = "5",
pages = "056009",
doi = "10.1103/PhysRevD.97.056009",
eprint = "1709.10106",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
SLACcitation = "%%CITATION = ARXIV:1709.10106;%%"
}
% September 17, 2017
@article{Frate:2017mai,
author = "Frate, Meghan and Cranmer, Kyle and Kalia, Saarik and
Vandenberg-Rodes, Alexander and Whiteson, Daniel",
title = "{Modeling Smooth Backgrounds and Generic Localized
Signals with Gaussian Processes}",
year = "2017",
eprint = "1709.05681",
archivePrefix = "arXiv",
primaryClass = "physics.data-an",
SLACcitation = "%%CITATION = ARXIV:1709.05681;%%"
}
% August 9, 2017
@article{Metodiev:2017vrx,
author = "Metodiev, Eric M. and Nachman, Benjamin and Thaler,
Jesse",
title = "{Classification without labels: Learning from mixed
samples in high energy physics}",
year = "2017",
eprint = "1708.02949",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
reportNumber = "MIT--CTP-4922",
SLACcitation = "%%CITATION = ARXIV:1708.02949;%%"
}
% June 30, 2017
@article{Bendavid:2017zhk,
author = "Bendavid, Joshua",
title = "{Efficient Monte Carlo Integration Using Boosted Decision
Trees and Generative Deep Neural Networks}",
year = "2017",
eprint = "1707.00028",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
}
% June 28, 2017
@article{Cohen:2017exh,
author = "Cohen, Timothy and Freytsis, Marat and Ostdiek, Bryan",
title = "{(Machine) Learning to Do More with Less}",
year = "2017",
eprint = "1706.09451",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
}
% May 5, 2017
@article{Paganini:2017hrr,
author = "Paganini, Michela and de Oliveira, Luke and Nachman,
Benjamin",
title = "{CaloGAN: Simulating 3D High Energy Particle Showers in
Multi-Layer Electromagnetic Calorimeters with Generative
Adversarial Networks}",
year = "2017",
eprint = "1705.02355",
archivePrefix = "arXiv",
primaryClass = "hep-ex",
}
% April 24, 2017
@article{Caron:2017hku,
author = {Caron, Sascha and Kim, Jong Soo and Rolbiecki, Krzysztof and de Austri, Roberto Ruiz and Stienen, Bob},
doi = {10.1140/epjc/s10052-017-4814-9},
issn = {1434-6052},
journal = {The European Physical Journal C},
number = {4},
pages = {257},
title = {The BSM-AI project: SUSY-AI--generalizing LHC limits on supersymmetry with machine learning},
url = {http://dx.doi.org/10.1140/epjc/s10052-017-4814-9},
volume = {77},
year = {2017},
bdsk-url-1 = {http://dx.doi.org/10.1140/epjc/s10052-017-4814-9}
}
% March 9, 2017
@article{Shimmin:2017mfk,
author = "Shimmin, Chase and Sadowski, Peter and Baldi, Pierre and
Weik, Edison and Whiteson, Daniel and Goul, Edward and
Søgaard, Andreas",
title = "{Decorrelated Jet Substructure Tagging using Adversarial
Neural Networks}",
year = "2017",
eprint = "1703.03507",
archivePrefix = "arXiv",
primaryClass = "hep-ex",
}
% February 2, 2017
@article{Louppe:2017ipp,
author = "Louppe, Gilles and Cho, Kyunghyun and Becot, Cyril and
Cranmer, Kyle",
title = "{QCD-Aware Recursive Neural Networks for Jet Physics}",
year = "2017",
eprint = "1702.00748",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
}
% February 1, 2017
@article{Dery:2017fap,
author = "Dery, Lucio Mwinmaarong and Nachman, Benjamin and Rubbo,
Francesco and Schwartzman, Ariel",
title = "{Weakly Supervised Classification in High Energy
Physics}",
journal = "JHEP",
volume = "05",
year = "2017",
pages = "145",
doi = "10.1007/JHEP05(2017)145",
eprint = "1702.00414",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
}
% January 20, 2017
@article{deOliveira:2017pjk,
author = "de Oliveira, Luke and Paganini, Michela and Nachman,
Benjamin",
title = "{Learning Particle Physics by Example: Location-Aware
Generative Adversarial Networks for Physics Synthesis}",
year = "2017",
eprint = "1701.05927",
archivePrefix = "arXiv",
primaryClass = "stat.ML",
}
% December 13, 2016
@article{Pang:2016vdc,
author = "Pang, Long-Gang and Zhou, Kai and Su, Nan and Petersen,
Hannah and Stöcker, Horst and Wang, Xin-Nian",
title = "{An EoS-meter of QCD transition from deep learning}",
year = "2016",
eprint = "1612.04262",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
}
% December 5, 2016
@article{Komiske:2016rsd,
author = "Komiske, Patrick T. and Metodiev, Eric M. and Schwartz,
Matthew D.",
title = "{Deep learning in color: towards automated quark/gluon
jet discrimination}",
journal = "JHEP",
volume = "01",
year = "2017",
pages = "110",
doi = "10.1007/JHEP01(2017)110",
eprint = "1612.01551",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
reportNumber = "MIT-CTP-4866",
}
% November 16, 2016
@article{Acciarri:2016ryt,
author = "Acciarri, R. and others",
title = "{Convolutional Neural Networks Applied to Neutrino Events
in a Liquid Argon Time Projection Chamber}",
collaboration = "MicroBooNE",
journal = "JINST",
volume = "12",
year = "2017",
number = "03",
pages = "P03011",
doi = "10.1088/1748-0221/12/03/P03011",
eprint = "1611.05531",
archivePrefix = "arXiv",
primaryClass = "physics.ins-det",
reportNumber = "FERMILAB-PUB-16-538-ND",
}
% November 15, 2016
@article{Kagan:2016wnu,
author = "Kagan, Michael and Oliveira, Luke de and Mackey, Lester
and Nachman, Benjamin and Schwartzman, Ariel",
title = "{Boosted Jet Tagging with Jet-Images and Deep Neural
Networks}",
booktitle = "{Proceedings, Connecting The Dots 2016: Vienna, Austria,
February 22-24, 2016}",
journal = "EPJ Web Conf.",
volume = "127",
year = "2016",
pages = "00009",
doi = "10.1051/epjconf/201612700009",
}
% November 8, 2016
@article{Bertone:2016mdy,
author = "Bertone, Gianfranco and Deisenroth, Marc Peter and Kim,
Jong Soo and Liem, Sebastian and Ruiz de Austri, Roberto
and Welling, Max",
title = "{Accelerating the BSM interpretation of LHC data with
machine learning}",
year = "2016",
eprint = "1611.02704",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
}
% November 3, 2016
@article{Louppe:2016ylz,
author = "Louppe, Gilles and Kagan, Michael and Cranmer, Kyle",
title = "{Learning to Pivot with Adversarial Networks}",
year = "2016",
eprint = "1611.01046",
archivePrefix = "arXiv",
primaryClass = "stat.ME",
}
% September 2, 2016
@article{Barnard:2016qma,
author = "Barnard, James and Dawe, Edmund Noel and Dolan, Matthew
J. and Rajcic, Nina",
title = "{Parton Shower Uncertainties in Jet Substructure Analyses
with Deep Neural Networks}",
journal = "Phys. Rev.",
volume = "D95",
year = "2017",
number = "1",
pages = "014018",
doi = "10.1103/PhysRevD.95.014018",
eprint = "1609.00607",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
}
% August 20, 2016
@article{Rogozhnikov:2016bdp,
author = "Rogozhnikov, A.",
title = "{Reweighting with Boosted Decision Trees}",
booktitle = "{Proceedings, 17th International Workshop on Advanced
Computing and Analysis Techniques in Physics Research
(ACAT 2016): Valparaiso, Chile, January 18-22, 2016}",
journal = "J. Phys. Conf. Ser.",
volume = "762",
year = "2016",
number = "1",
pages = "012036",
doi = "10.1088/1742-6596/762/1/012036",
eprint = "1608.05806",
archivePrefix = "arXiv",
primaryClass = "physics.data-an",
SLACcitation = "%%CITATION = ARXIV:1608.05806;%%"
}
% July 28, 2016
@article{Guest:2016iqz,
author = "Guest, Daniel and Collado, Julian and Baldi, Pierre and
Hsu, Shih-Chieh and Urban, Gregor and Whiteson, Daniel",
title = "{Jet Flavor Classification in High-Energy Physics with
Deep Neural Networks}",
journal = "Phys. Rev.",
volume = "D94",
year = "2016",
number = "11",
pages = "112002",
doi = "10.1103/PhysRevD.94.112002",
eprint = "1607.08633",
archivePrefix = "arXiv",
primaryClass = "hep-ex",
SLACcitation = "%%CITATION = ARXIV:1607.08633;%%"
}
% April 5, 2016
@article{Aurisano:2016jvx,
author = "Aurisano, A. and Radovic, A. and Rocco, D. and Himmel, A.
and Messier, M. D. and Niner, E. and Pawloski, G. and
Psihas, F. and Sousa, A. and Vahle, P.",
title = "{A Convolutional Neural Network Neutrino Event
Classifier}",
journal = "JINST",
volume = "11",
year = "2016",
number = "09",
pages = "P09001",
doi = "10.1088/1748-0221/11/09/P09001",
eprint = "1604.01444",
archivePrefix = "arXiv",
primaryClass = "hep-ex",
reportNumber = "FERMILAB-PUB-16-082-ND",
}
% January 28, 2016
@article{Baldi:2016fzo,
author = "Baldi, Pierre and Cranmer, Kyle and Faucett, Taylor and
Sadowski, Peter and Whiteson, Daniel",
title = "{Parameterized neural networks for high-energy physics}",
journal = "Eur. Phys. J.",
volume = "C76",
year = "2016",
number = "5",
pages = "235",
doi = "10.1140/epjc/s10052-016-4099-4",
eprint = "1601.07913",
archivePrefix = "arXiv",
primaryClass = "hep-ex",
SLACcitation = "%%CITATION = ARXIV:1601.07913;%%"
}
% November 16, 2015
@article{deOliveira:2015xxd,
author = "de Oliveira, Luke and Kagan, Michael and Mackey, Lester
and Nachman, Benjamin and Schwartzman, Ariel",
title = "{Jet-images — deep learning edition}",
journal = "JHEP",
volume = "07",
year = "2016",
pages = "069",
doi = "10.1007/JHEP07(2016)069",
eprint = "1511.05190",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
}
% October 15, 2014
@article{Rogozhnikov:2014zea,
author = "Rogozhnikov, Alex and Bukva, Aleksandar and Gligorov, V.
V. and Ustyuzhanin, Andrey and Williams, Mike",
title = "{New approaches for boosting to uniformity}",
journal = "JINST",
volume = "10",
year = "2015",
number = "03",
pages = "T03002",
doi = "10.1088/1748-0221/10/03/T03002",
eprint = "1410.4140",
archivePrefix = "arXiv",
primaryClass = "hep-ex",
SLACcitation = "%%CITATION = ARXIV:1410.4140;%%"
}
% February 19, 2014
@article{Baldi:2014kfa,
author = "Baldi, Pierre and Sadowski, Peter and Whiteson, Daniel",
title = "{Searching for Exotic Particles in High-Energy Physics
with Deep Learning}",
journal = "Nature Commun.",
volume = "5",
year = "2014",
pages = "4308",
doi = "10.1038/ncomms5308",
eprint = "1402.4735",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
}
% May 30, 2013
@article{Stevens:2013dya,
author = "Stevens, Justin and Williams, Mike",
title = "{uBoost: A boosting method for producing uniform
selection efficiencies from multivariate classifiers}",
journal = "JINST",
volume = "8",
year = "2013",
pages = "P12013",
doi = "10.1088/1748-0221/8/12/P12013",
eprint = "1305.7248",
archivePrefix = "arXiv",
primaryClass = "nucl-ex",
SLACcitation = "%%CITATION = ARXIV:1305.7248;%%"
}
% October 25, 2012
@article{Gligorov:2012qt,
author = "Gligorov, V. V. and Williams, Mike",
title = "{Efficient, reliable and fast high-level triggering using
a bonsai boosted decision tree}",
journal = "JINST",
volume = "8",
year = "2013",
pages = "P02013",
doi = "10.1088/1748-0221/8/02/P02013",
eprint = "1210.6861",
archivePrefix = "arXiv",
primaryClass = "physics.ins-det",
SLACcitation = "%%CITATION = ARXIV:1210.6861;%%"
}
% September 20, 1987
@article{Denby:1987rk,
author = "Denby, Bruce H.",
title = "{Neural Networks and Cellular Automata in Experimental
High-energy Physics}",
journal = "Comput. Phys. Commun.",
volume = "49",
year = "1988",
pages = "429-448",
doi = "10.1016/0010-4655(88)90004-5",
reportNumber = "LAL-87-56"
}