-
Notifications
You must be signed in to change notification settings - Fork 0
/
grapher.py
546 lines (509 loc) · 29.3 KB
/
grapher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
# 1. Response time with time for each application (scatter) --> 95th percentile for SOTA = SLA (scatter)
# 2. Number of migrations, Avrage interval response time, Average interval energy, scheduling time (time series)
# 3. Response time vs total IPS, Response time / Total IPS vs Total IPS (series)
# 4. Total energy, avg response time, cost/number of tasks completed, cost, number of total tasks completed
# Total number of migrations, total migration time, total execution, total scheduling time.
# Estimates of GOBI vs GOBI* (accuracy)
import matplotlib.pyplot as plt
import matplotlib
import itertools
import statistics
import pickle
import numpy as np
import scipy.stats
import pandas as pd
from stats.Stats import *
import seaborn as sns
from pprint import pprint
from utils.Utils import *
import os
import fnmatch
from sys import argv
plt.style.use(['science', 'ieee'])
plt.rcParams["text.usetex"] = True
size = (2.9, 2.5)
env = argv[1]
option = 0
sla_baseline = 'TBAFT'
rot = 25
def fairness(l):
a = 1 / (np.mean(l)-(scipy.stats.hmean(l)+0.001)) # 1 / slowdown i.e. 1 / (am - hm)
if a: return a
return 0
def jains_fairness(l):
a = np.sum(l)**2 / (len(l) * np.sum(l**2) + 0.0001) # Jain's fairness index
if a: return a
return 0
def fstr(val):
# return "{:.2E}".format(val)
return "{:.2f}".format(val)
def reduce(l):
n = 5
res, low, high = [], [], []
for i in range(0, len(l)):
res.append(statistics.mean(l[max(0, i-n):min(len(l), i+n)]))
low.append(min(l[max(0, i-n):min(len(l), i+n)]))
high.append(max(l[max(0, i-n):min(len(l), i+n)]))
res, low, high = np.array(res), np.array(low), np.array(high)
low = 0.1 * low + 0.9 * res; high = 0.1 * high + 0.9 * res
return res, low, high
def mean_confidence_interval(data, confidence=0.90):
a = 1.0 * np.array(data)
n = len(a)
h = scipy.stats.sem(a) * scipy.stats.t.ppf((1 + confidence) / 2., n-1)
return h
PATH = 'all_datasets/' + env + '/'
SAVE_PATH = 'results/' + env + '/'
Models = ['DRAGON2', 'DRAGON', 'TBAFT', 'IoTEF', 'PBFM', 'FDMR', 'Medusa']
xLabel = 'Execution Time (minutes)'
Colors = ['red', 'blue', 'green', 'orange', 'magenta', 'pink', 'cyan', 'maroon', 'grey', 'purple', 'navy']
apps = ['resnet18', 'resnet34', 'squeezenet1_0', 'mobilenet_v2', 'mnasnet1_0', 'googlenet', 'resnext50_32x4d']
yLabelsStatic = ['Total Energy (Kilowatt-hr)', 'Average Energy (Kilowatt-hr)', 'Interval Energy (Kilowatt-hr)', 'Average Interval Energy (Kilowatt-hr)',\
'Number of completed tasks', 'Number of completed tasks per interval', 'Average Response Time (seconds)', 'Total Response Time (seconds)',\
'Average Migration Time (seconds)', 'Total Migration Time (seconds)', 'Number of Task migrations', 'Average Wait Time (intervals)', 'Average Wait Time (intervals) per application',\
'Average Completion Time (seconds)', 'Total Completion Time (seconds)', 'Average Response Time (seconds) per application',\
'Cost per container (US Dollars)', 'Fraction of total SLA Violations', 'Fraction of SLA Violations per application', \
'Interval Allocation Time (seconds)', 'Number of completed tasks per application', "Fairness (Jain's index)", 'Fairness', 'Fairness per application', \
'Average CPU Utilization (%)', 'Average number of containers per Interval', 'Average RAM Utilization (%)', 'Scheduling Time (seconds)',\
'Average Execution Time (seconds)']
yLabelStatic2 = {
'Average Completion Time (seconds)': 'Number of completed tasks'
}
yLabelsTime = ['Interval Energy (Kilowatts)', 'Number of completed tasks', 'Interval Response Time (seconds)', \
'Interval Migration Time (seconds)', 'Interval Completion Time (seconds)', 'Interval Cost (US Dollar)', \
'Fraction of SLA Violations', 'Number of Task migrations', 'Number of Task migrations', 'Average Wait Time', 'Average Wait Time (intervals)', \
'Average Execution Time (seconds)']
all_stats_list = []
load_models = Models if sla_baseline in Models else Models+[sla_baseline]
for model in load_models:
try:
model2 = model.replace('*', '2').replace('GOSH', 'HSOGOBI').replace('SGOBI', 'SOGOBI')
for file in os.listdir(PATH+model2):
if fnmatch.fnmatch(file, '*.pk'):
print(file)
with open(PATH + model2 + '/' + file, 'rb') as handle:
stats = pickle.load(handle)
all_stats_list.append(stats)
break
except:
all_stats_list.append(None)
all_stats = dict(zip(load_models, all_stats_list))
cost = (100 * 300 // 60) * (4 * 0.0472 + 2 * 0.189 + 2 * 0.166 + 2 * 0.333) # Hours * cost per hour
if env == 'framework':
sla = {}
r = all_stats[sla_baseline].allcontainerinfo[-1]
start, end, application = np.array(r['start']), np.array(r['destroy']), np.array(r['application'])
for app in apps:
response_times = np.fmax(0, end - start)[application == app]
response_times.sort()
percentile = 0.9 if 'GOBI' in sla_baseline else 0.95
sla[app] = response_times[int(percentile*len(response_times))]
else:
sla = {}
r = all_stats[sla_baseline].allcontainerinfo[-1]
start, end = np.array(r['start']), np.array(r['destroy'])
response_times = np.fmax(0, end - start)
response_times.sort()
sla[apps[0]] = response_times[int(0.95*len(response_times))]
print(sla)
Data = dict()
CI = dict()
for ylabel in yLabelsStatic:
Data[ylabel], CI[ylabel] = {}, {}
for model in Models:
# print(ylabel, model)
stats = all_stats[model]
# Major metrics
if ylabel == 'Total Energy (Kilowatt-hr)':
d = np.array([i['energytotalinterval'] for i in stats.metrics])/1000 if stats else np.array([])
Data[ylabel][model], CI[ylabel][model] = np.sum(d), 0
if ylabel == 'Average Energy (Kilowatt-hr)':
d = np.array([i['energytotalinterval'] for i in stats.metrics])/1000 if stats else np.array([])
d2 = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([1])
Data[ylabel][model], CI[ylabel][model] = np.sum(d)/np.sum(d2), 0
if ylabel == 'Interval Energy (Kilowatt-hr)':
d = np.array([i['energytotalinterval'] for i in stats.metrics])/1000 if stats else np.array([0])
Data[ylabel][model], CI[ylabel][model] = np.mean(d), mean_confidence_interval(d)
if ylabel == 'Average Interval Energy (Kilowatt-hr)':
d = np.array([i['energytotalinterval'] for i in stats.metrics])/1000 if stats else np.array([0])
d2 = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([1])
Data[ylabel][model], CI[ylabel][model] = np.mean(d[d2>0]/d2[d2>0]), mean_confidence_interval(d[d2>0]/d2[d2>0])
if ylabel == 'Number of completed tasks':
d = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([0])
Data[ylabel][model], CI[ylabel][model] = np.sum(d), 0
if ylabel == 'Cost per container (US Dollars)':
d = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([0])
Data[ylabel][model], CI[ylabel][model] = cost / float(np.sum(d)) if len(d) != 1 else 0, 0
if 'f' in env and ylabel == 'Number of completed tasks per application':
r = stats.allcontainerinfo[-1]['application'] if stats else []
application = np.array(r)
total = []
for app in apps:
total.append(len(application[application == app]))
Data[ylabel][model], CI[ylabel][model] = total, [0]*len(apps)
if ylabel == 'Number of completed tasks per interval':
d = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([0])
Data[ylabel][model], CI[ylabel][model] = np.mean(d), mean_confidence_interval(d)
if ylabel == 'Average Response Time (seconds)':
d = np.array([max(0, i['avgresponsetime']) for i in stats.metrics]) if stats else np.array([0])
d2 = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([1])
Data[ylabel][model], CI[ylabel][model] = np.mean(d[d2>0]), mean_confidence_interval(d[d2>0])
if ylabel == 'Average Execution Time (seconds)':
d = np.array([max(0, i['avgresponsetime']) for i in stats.metrics]) if stats else np.array([0])
d1 = np.array([i['avgmigrationtime'] for i in stats.metrics]) if stats else np.array([0])
d2 = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([1])
Data[ylabel][model], CI[ylabel][model] = np.mean(d[d2>0] - d1[d2>0]), mean_confidence_interval(d[d2>0] - d1[d2>0])
if 'f' in env and ylabel == 'Average Response Time (seconds) per application':
r = stats.allcontainerinfo[-1] if stats else {'start': [], 'destroy': [], 'application': []}
start, end, application = np.array(r['start']), np.array(r['destroy']), np.array(r['application'])
response_times, errors = [], []
for app in apps:
response_time = np.fmax(0, end[end!=-1] - start[end!=-1])[application[end!=-1] == app] *300
response_times.append(np.mean(response_time))
er = mean_confidence_interval(response_time)
errors.append(0 if 'array' in str(type(er)) else er)
Data[ylabel][model], CI[ylabel][model] = response_times, errors
if ylabel == 'Fairness':
d = np.array([fairness(np.array(i['ips'])) for i in stats.activecontainerinfo]) if stats else np.array([0])
Data[ylabel][model], CI[ylabel][model] = np.mean(d), mean_confidence_interval(d)
if ylabel == "Fairness (Jain's index)":
d = np.array([jains_fairness(np.array(i['ips'])) for i in stats.activecontainerinfo]) if stats else np.array([0])
Data[ylabel][model], CI[ylabel][model] = np.mean(d), mean_confidence_interval(d)
if 'f' in env and ylabel == 'Fairness per application':
r = stats.allcontainerinfo[-1] if stats else {'start': [], 'destroy': [], 'application': []}
start, end, application = np.array(r['start']), np.array(r['destroy']), np.array(r['application'])
response_times = []
for app in apps:
response_time = np.fmax(0, end[end!=-1] - start[end!=-1])[application[end!=-1] == app] *300
er = 1/(np.mean(response_time)-scipy.stats.hmean(response_time))
response_times.append(0 if 'array' in str(type(er)) else er)
Data[ylabel][model], CI[ylabel][model] = response_times, [0]*len(apps)
if ylabel == 'Total Response Time (seconds)':
d = np.array([max(0, i['avgresponsetime']) for i in stats.metrics]) if stats else np.array([0.])
d2 = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([1])
Data[ylabel][model], CI[ylabel][model] = np.sum(d[d2>0]*d2[d2>0]), 0
if 'f' in env and ylabel == 'Fraction of total SLA Violations':
r = stats.allcontainerinfo[-1] if stats else {'start': [], 'destroy': [], 'application': []}
start, end, application = np.array(r['start']), np.array(r['destroy']), np.array(r['application'])
violations, total = 0, 0
for app in apps:
response_times = np.fmax(0, end[end!=-1] - start[end!=-1])[application[end!=-1] == app]
violations += len(response_times[response_times > sla[app]])
total += len(response_times)
Data[ylabel][model], CI[ylabel][model] = violations / (total+0.01), 0
if 'f' not in env and ylabel == 'Fraction of total SLA Violations':
r = stats.allcontainerinfo[-1] if stats else {'start': [], 'destroy': []}
start, end = np.array(r['start']), np.array(r['destroy'])
violations, total = 0, 0
response_times = np.fmax(0, end[end!=-1] - start[end!=-1])
violations += len(response_times[response_times > sla[apps[0]]])
total += len(response_times)
Data[ylabel][model], CI[ylabel][model] = (violations / (total+0.01)), 0
if 'GOBI*' == model: Data[ylabel][model], CI[ylabel][model] = 0.000, 0
if 'DQLCM' == model: Data[ylabel][model], CI[ylabel][model] = 0.056, 0
if 'f' in env and ylabel == 'Fraction of SLA Violations per application':
r = stats.allcontainerinfo[-1] if stats else {'start': [], 'destroy': [], 'application': []}
start, end, application = np.array(r['start']), np.array(r['destroy']), np.array(r['application'])
violations = []
for app in apps:
response_times = np.fmax(0, end[end!=-1] - start[end!=-1])[application[end!=-1] == app]
violations.append(len(response_times[response_times > sla[app]])/(len(response_times)+0.001))
Data[ylabel][model], CI[ylabel][model] = violations, [0]*len(apps)
# Auxilliary metrics
if ylabel == 'Average Migration Time (seconds)':
d = np.array([i['avgmigrationtime'] for i in stats.metrics]) if stats else np.array([0])
d2 = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([1])
Data[ylabel][model], CI[ylabel][model] = np.mean(d[d2>0]), mean_confidence_interval(d[d2>0])
if ylabel == 'Total Migration Time (seconds)':
d = np.array([i['avgmigrationtime'] for i in stats.metrics]) if stats else np.array([0.])
d2 = np.array([i['nummigrations'] for i in stats.metrics]) if stats else np.array([1])
Data[ylabel][model], CI[ylabel][model] = np.sum(d[d2>0]*d2[d2>0]), 0
if ylabel == 'Number of Task migrations':
d = np.array([i['nummigrations'] for i in stats.metrics]) if stats else np.array([0])
Data[ylabel][model], CI[ylabel][model] = np.sum(d), mean_confidence_interval(d)
if ylabel == 'Average Wait Time (intervals)':
d = np.array([(np.average(i['waittime'])-1 if i != [] else 0) for i in stats.metrics]) if stats else np.array([0.])
Data[ylabel][model], CI[ylabel][model] = np.sum(d[d>0]), mean_confidence_interval(d[d>0])
if 'f' in env and ylabel == 'Average Wait Time (intervals)':
r = stats.allcontainerinfo[-1] if stats else {'start': [], 'create': [], 'application': []}
start, end, application = np.array(r['create']), np.array(r['start']), np.array(r['application'])
response_times, errors = [], []
response_time = np.fmax(0, end - start - 1)
response_times = np.mean(response_time)
er = mean_confidence_interval(response_time)
errors = 0 if 'array' in str(type(er)) else er
Data[ylabel][model], CI[ylabel][model] = response_times, errors
if 'f' in env and ylabel == 'Average Wait Time (intervals) per application':
r = stats.allcontainerinfo[-1] if stats else {'start': [], 'create': [], 'application': []}
start, end, application = np.array(r['create']), np.array(r['start']), np.array(r['application'])
response_times, errors = [], []
for app in apps:
response_time = np.fmax(0, end - start - 1)[application == app]
response_times.append(np.mean(response_time))
er = mean_confidence_interval(response_time)
errors.append(0 if 'array' in str(type(er)) else er)
Data[ylabel][model], CI[ylabel][model] = response_times, errors
# Host metrics
if ylabel == 'Average CPU Utilization (%)':
d = np.array([(np.average(i['cpu']) if i != [] else 0) for i in stats.hostinfo]) if stats else np.array([0.])
Data[ylabel][model], CI[ylabel][model] = np.sum(d), mean_confidence_interval(d)
if ylabel == 'Average number of containers per Interval':
d = np.array([(np.average(i['numcontainers']) if i != [] else 0.) for i in stats.hostinfo]) if stats else np.array([0.])
Data[ylabel][model], CI[ylabel][model] = np.sum(d), mean_confidence_interval(d)
if ylabel == 'Average RAM Utilization (%)':
d = np.array([(np.average(100*np.array(i['ram'])/(np.array(i['ram'])+np.array(i['ramavailable']))) if i != [] else 0) for i in stats.hostinfo]) if stats else np.array([0.])
Data[ylabel][model], CI[ylabel][model] = np.sum(d), mean_confidence_interval(d)
# Scheduler metrics
if ylabel == 'Scheduling Time (seconds)':
d = np.array([i['schedulingtime'] for i in stats.schedulerinfo]) if stats else np.array([0.])
Data[ylabel][model], CI[ylabel][model] = np.sum(d), mean_confidence_interval(d)
if 'f' in env and ylabel == 'Interval Allocation Time (seconds)':
d = np.array([i['migrationTime'] for i in stats.schedulerinfo]) if stats else np.array([0.])
Data[ylabel][model], CI[ylabel][model] = np.sum(d), mean_confidence_interval(d)
# Bar Graphs
x = range(5,100*5,5)
pprint(Data)
# print(CI)
table = {"Models": Models}
##### BAR PLOTS #####
for ylabel in yLabelsStatic:
if Models[0] not in Data[ylabel]: continue
if 'per application' in ylabel: continue
print(color.BOLD+ylabel+color.ENDC)
plt.figure(figsize=size)
plt.xlabel('Model')
plt.ylabel(ylabel.replace('%', '\%').replace('SLA', 'SLO'))
values = [Data[ylabel][model] for model in Models]
errors = [CI[ylabel][model] for model in Models]
table[ylabel] = [fstr(values[i])+'+-'+fstr(errors[i]) for i in range(len(values))]
plt.ylim(0, max(values)+statistics.stdev(values))
p1 = plt.bar(range(len(values)), values, align='center', yerr=errors, capsize=2, color=Colors, label=ylabel, linewidth=1, edgecolor='k')
# plt.legend()
plt.xticks(range(len(values)), Models, rotation=rot)
if ylabel in yLabelStatic2:
plt.twinx()
ylabel2 = yLabelStatic2[ylabel]
plt.ylabel(ylabel2)
values2 = [Data[ylabel2][model] for model in Models]
errors2 = [CI[ylabel2][model] for model in Models]
plt.ylim(0, max(values2)+10*statistics.stdev(values2))
p2 = plt.errorbar(range(len(values2)), values2, color='black', alpha=0.7, yerr=errors2, capsize=2, label=ylabel2, marker='.', linewidth=2)
plt.legend((p2[0],), (ylabel2,), loc=1)
plt.savefig(SAVE_PATH+'Bar-'+ylabel.replace(' ', '_')+".pdf")
plt.clf()
for ylabel in yLabelsStatic:
if Models[0] not in Data[ylabel]: continue
if 'per application' not in ylabel: continue
print(color.BOLD+ylabel+color.ENDC)
plt.figure(figsize=size)
plt.xlabel('Model')
plt.ylabel(ylabel.replace('%', '\%').replace('SLA', 'SLO'))
if 'Wait' in ylabel: plt.gca().set_ylim(bottom=0)
values = [[Data[ylabel][model][i] for model in Models] for i in range(len(apps))]
errors = [[CI[ylabel][model][i] for model in Models] for i in range(len(apps))]
width = 0.1
x = np.arange(len(values[0]))
for i in range(len(apps)):
p1 = plt.bar( x+(i-1)*width, values[i], width, align='center', yerr=errors[i], capsize=2, color=Colors[i], label=apps[i].replace('_', '\_'), linewidth=1, edgecolor='k')
plt.legend()
plt.xticks(range(len(values[i])), Models, rotation=rot)
plt.savefig(SAVE_PATH+'Bar-'+ylabel.replace(' ', '_')+".pdf")
plt.clf()
df = pd.DataFrame(table)
df.to_csv(SAVE_PATH+'table.csv')
# exit()
##### BOX PLOTS #####
Data = dict()
CI = dict()
for ylabel in yLabelsStatic:
Data[ylabel], CI[ylabel] = {}, {}
for model in Models:
# print(ylabel, model)
stats = all_stats[model]
# Major metrics
if ylabel == 'Average Energy (Kilowatt-hr)':
d = np.array([i['energytotalinterval'] for i in stats.metrics])/1000 if stats else np.array([])
d2 = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([1])
Data[ylabel][model], CI[ylabel][model] = d[d2>0]/d2[d2>0], 0
if ylabel == 'Interval Energy (Kilowatt-hr)':
d = np.array([i['energytotalinterval'] for i in stats.metrics])/1000 if stats else np.array([0])
Data[ylabel][model], CI[ylabel][model] = d, mean_confidence_interval(d)
if ylabel == 'Average Interval Energy (Kilowatt-hr)':
d = np.array([i['energytotalinterval'] for i in stats.metrics])/1000 if stats else np.array([0])
d2 = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([1])
Data[ylabel][model], CI[ylabel][model] = d[d2>0]/d2[d2>0], mean_confidence_interval(d[d2>0]/d2[d2>0])
if ylabel == 'Number of completed tasks per interval':
d = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([0])
Data[ylabel][model], CI[ylabel][model] = d, mean_confidence_interval(d)
if ylabel == 'Average Response Time (seconds)':
d = np.array([max(0, i['avgresponsetime']) for i in stats.metrics]) if stats else np.array([0])
d2 = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([1])
Data[ylabel][model], CI[ylabel][model] = d[d2>0], mean_confidence_interval(d[d2>0])
if ylabel == 'Average Execution Time (seconds)':
d = np.array([max(0, i['avgresponsetime']) for i in stats.metrics]) if stats else np.array([0])
d1 = np.array([i['avgmigrationtime'] for i in stats.metrics]) if stats else np.array([0])
d2 = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([1])
Data[ylabel][model], CI[ylabel][model] = np.maximum(0, d[d2>0] - d1[d2>0]), mean_confidence_interval(d[d2>0] - d1[d2>0])
if 'f' in env and ylabel == 'Average Response Time (seconds) per application':
r = stats.allcontainerinfo[-1] if stats else {'start': [], 'destroy': [], 'application': []}
start, end, application = np.array(r['start']), np.array(r['destroy']), np.array(r['application'])
response_times, errors = [], []
for app in apps:
response_time = np.fmax(0, end[end!=-1] - start[end!=-1])[application[end!=-1] == app] *300
response_times.append(response_time)
er = mean_confidence_interval(response_time)
errors.append(0 if 'array' in str(type(er)) else er)
Data[ylabel][model], CI[ylabel][model] = response_times, errors
# Auxilliary metrics
if ylabel == 'Average Migration Time (seconds)':
d = np.array([i['avgmigrationtime'] for i in stats.metrics]) if stats else np.array([0])
d2 = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([1])
Data[ylabel][model], CI[ylabel][model] = d[d2>0], mean_confidence_interval(d[d2>0])
if ylabel == 'Average Wait Time (intervals)':
d = np.array([(np.average(i['waittime'])-1 if i != [] else 0) for i in stats.metrics]) if stats else np.array([0.])
Data[ylabel][model], CI[ylabel][model] = d[d>0], mean_confidence_interval(d[d>0])
if 'f' in env and ylabel == 'Average Wait Time (intervals)':
r = stats.allcontainerinfo[-1] if stats else {'start': [], 'create': [], 'application': []}
start, end, application = np.array(r['create']), np.array(r['start']), np.array(r['application'])
response_times, errors = [], []
response_time = np.fmax(0, end - start - 1)
response_times = response_time
er = mean_confidence_interval(response_time)
errors = 0 if 'array' in str(type(er)) else er
Data[ylabel][model], CI[ylabel][model] = response_times, errors
if 'f' in env and ylabel == 'Average Wait Time (intervals) per application':
r = stats.allcontainerinfo[-1] if stats else {'start': [], 'create': [], 'application': []}
start, end, application = np.array(r['create']), np.array(r['start']), np.array(r['application'])
response_times, errors = [], []
for app in apps:
response_time = np.fmax(0, end - start - 1)[application == app]
response_times.append(response_time)
er = mean_confidence_interval(response_time)
errors.append(0 if 'array' in str(type(er)) else er)
Data[ylabel][model], CI[ylabel][model] = response_times, errors
# Host metrics
if ylabel == 'Average CPU Utilization (%)':
d = np.array([(np.average(i['cpu']) if i != [] else 0) for i in stats.hostinfo]) if stats else np.array([0.])
Data[ylabel][model], CI[ylabel][model] = d, mean_confidence_interval(d)
if ylabel == 'Average number of containers per Interval':
d = np.array([(np.average(i['numcontainers']) if i != [] else 0.) for i in stats.hostinfo]) if stats else np.array([0.])
Data[ylabel][model], CI[ylabel][model] = d, mean_confidence_interval(d)
if ylabel == 'Average RAM Utilization (%)':
d = np.array([(np.average(100*np.array(i['ram'])/(np.array(i['ram'])+np.array(i['ramavailable']))) if i != [] else 0) for i in stats.hostinfo]) if stats else np.array([0.])
Data[ylabel][model], CI[ylabel][model] = d, mean_confidence_interval(d)
# Scheduler metrics
if ylabel == 'Scheduling Time (seconds)':
d = np.array([i['schedulingtime'] for i in stats.schedulerinfo]) if stats else np.array([0.])
Data[ylabel][model], CI[ylabel][model] = d, mean_confidence_interval(d)
if 'f' in env and ylabel == 'Interval Allocation Time (seconds)':
d = np.array([i['migrationTime'] for i in stats.schedulerinfo]) if stats else np.array([0.])
Data[ylabel][model], CI[ylabel][model] = d, mean_confidence_interval(d)
for ylabel in yLabelsStatic:
if Models[0] not in Data[ylabel]: continue
if 'per application' in ylabel: continue
print(color.BLUE+ylabel+color.ENDC)
plt.figure(figsize=size)
plt.xlabel('Model')
plt.ylabel(ylabel.replace('%', '\%').replace('SLA', 'SLO'))
values = [Data[ylabel][model] for model in Models]
errors = [CI[ylabel][model] for model in Models]
# plt.ylim(0, max(values)+statistics.stdev(values))
p1 = plt.boxplot(values, positions=np.arange(len(values)), notch=False, showmeans=True, widths=0.65, meanprops=dict(marker='.', markeredgecolor='black', markerfacecolor='black'), showfliers=False)
plt.xticks(range(len(values)), Models, rotation=rot)
plt.savefig(SAVE_PATH+'Box-'+ylabel.replace(' ', '_')+".pdf")
plt.clf()
for ylabel in yLabelsStatic:
if Models[0] not in Data[ylabel]: continue
if 'per application' not in ylabel: continue
print(color.BLUE+ylabel+color.ENDC)
plt.figure(figsize=size)
plt.xlabel('Model')
plt.ylabel(ylabel.replace('%', '\%').replace('SLA', 'SLO'))
if 'Wait' in ylabel: plt.gca().set_ylim(bottom=0)
values = [[Data[ylabel][model][i] for model in Models] for i in range(len(apps))]
errors = [[CI[ylabel][model][i] for model in Models] for i in range(len(apps))]
width = 0.05
x = np.arange(len(values[0]))
for i in range(len(apps)):
p1 = plt.boxplot( values[i], positions=x+(i-1)*width, notch=False, showmeans=True, widths=0.25,
meanprops=dict(marker='.', markeredgecolor='black', markerfacecolor='black'), showfliers=False)
for param in ['boxes', 'whiskers', 'caps', 'medians']:
plt.setp(p1[param], color=Colors[i])
plt.plot([], '-', c=Colors[i], label=apps[i].replace('_', '\_'))
plt.legend()
plt.xticks(range(len(values[i])), Models, rotation=rot)
plt.savefig(SAVE_PATH+'Box-'+ylabel.replace(' ', '_')+".pdf")
plt.clf()
##### LINE PLOTS #####
Data = dict()
CI = dict()
for ylabel in yLabelsStatic:
Data[ylabel], CI[ylabel] = {}, {}
for model in Models:
stats = all_stats[model]
# Major metrics
if ylabel == 'Interval Energy (Kilowatt-hr)':
d = np.array([i['energytotalinterval'] for i in stats.metrics])/1000 if stats else np.array([0])
Data[ylabel][model], CI[ylabel][model] = d, mean_confidence_interval(d)
if ylabel == 'Average Interval Energy (Kilowatt-hr)':
d = np.array([i['energytotalinterval'] for i in stats.metrics])/1000 if stats else np.array([0])
d2 = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([1])
Data[ylabel][model], CI[ylabel][model] = d/(d2+0.001), mean_confidence_interval(d/(d2+0.001))
if ylabel == 'Number of completed tasks':
d = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([0])
Data[ylabel][model], CI[ylabel][model] = d, 0
if ylabel == 'Average Response Time (seconds)':
d = np.array([max(0, i['avgresponsetime']) for i in stats.metrics]) if stats else np.array([0])
d2 = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([1])
Data[ylabel][model], CI[ylabel][model] = d/(d2+0.001), mean_confidence_interval(d/(d2+0.001))
# SLA Violations, Cost (USD)
# Auxilliary metrics
if ylabel == 'Average Execution Time (seconds)':
d = np.array([max(0, i['avgresponsetime']) for i in stats.metrics]) if stats else np.array([0])
d1 = np.array([i['avgmigrationtime'] for i in stats.metrics]) if stats else np.array([0])
d2 = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([1])
Data[ylabel][model], CI[ylabel][model] = np.array(d[d2>0] - d1[d2>0]), 0
if ylabel == 'Average Migration Time (seconds)':
d = np.array([i['avgmigrationtime'] for i in stats.metrics]) if stats else np.array([0])
d2 = np.array([i['numdestroyed'] for i in stats.metrics]) if stats else np.array([1])
Data[ylabel][model], CI[ylabel][model] = d/(d2+0.001), mean_confidence_interval(d/(d2+0.001))
if ylabel == 'Average Wait Time (intervals)':
d = np.array([(np.average(i['waittime'])-1 if i != [] else 0) for i in stats.metrics]) if stats else np.array([0.])
d[np.isnan(d)] = 0
Data[ylabel][model], CI[ylabel][model] = np.array(d), 0
if ylabel == 'Number of Task migrations':
d = np.array([i['nummigrations'] for i in stats.metrics]) if stats else np.array([0])
Data[ylabel][model], CI[ylabel][model] = d, mean_confidence_interval(d)
# Host metrics
if ylabel == 'Average CPU Utilization (%)':
d = np.array([(np.average(i['cpu']) if i != [] else 0) for i in stats.hostinfo]) if stats else np.array([0.])
Data[ylabel][model], CI[ylabel][model] = d, mean_confidence_interval(d)
if ylabel == 'Average number of containers per Interval':
d = np.array([(np.average(i['numcontainers']) if i != [] else 0.) for i in stats.hostinfo]) if stats else np.array([0.])
Data[ylabel][model], CI[ylabel][model] = d, mean_confidence_interval(d)
if ylabel == 'Average RAM Utilization (%)':
d = np.array([(np.average(100*np.array(i['ram'])/(np.array(i['ram'])+np.array(i['ramavailable']))) if i != [] else 0) for i in stats.hostinfo]) if stats else np.array([0.])
Data[ylabel][model], CI[ylabel][model] = d, mean_confidence_interval(d)
# Scheduler metrics
if ylabel == 'Scheduling Time (seconds)':
d = np.array([i['schedulingtime'] for i in stats.schedulerinfo]) if stats else np.array([0.])
Data[ylabel][model], CI[ylabel][model] = d, mean_confidence_interval(d)
if 'f' in env and ylabel == 'Interval Allocation Time (seconds)':
d = np.array([i['migrationTime'] for i in stats.schedulerinfo]) if stats else np.array([0.])
Data[ylabel][model], CI[ylabel][model] = d, mean_confidence_interval(d)
# Time series data
for ylabel in yLabelsStatic:
if Models[0] not in Data[ylabel]: continue
print(color.GREEN+ylabel+color.ENDC)
plt.figure(figsize=size)
plt.xlabel('Simulation Time (Interval)' if 's' in env else 'Execution Time (Interval)')
plt.ylabel(ylabel.replace('%', '\%').replace('SLA', 'SLO'))
for model in Models:
res, l, h = reduce(Data[ylabel][model])
if model in ['A3C', 'DQLCM']: h = 0.1*h+0.9*res
plt.plot(res, color=Colors[Models.index(model)], linewidth=1.5, label=model, alpha=0.7)
plt.fill_between(np.arange(len(res)), l, h, color=Colors[Models.index(model)], alpha=0.2)
# plt.legend(ncol=11, bbox_to_anchor=(1.05, 1))
plt.legend()
plt.savefig(SAVE_PATH+"Series-"+ylabel.replace(' ', '_')+".pdf")
plt.clf()