-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
390 lines (306 loc) · 12 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import argparse
import logging
import os
import random
import numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F
import torch.optim as optim
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def print_peak_memory(prefix, device):
if device == 0:
print(f"{prefix}: {torch.cuda.max_memory_allocated(device) // 1e6}MB ")
def get_flops(model, img_size=224, backend='ptflops'):
if backend == 'thop':
from thop import clever_format, profile
bs = 2
img = torch.randn(bs, 3, img_size, img_size)
flops, params = profile(model, inputs=(img, ))
flops = flops / bs
flops, params = clever_format([flops, params], "%.3f")
else:
from ptflops import get_model_complexity_info
flops, params = get_model_complexity_info(model, (3, img_size, img_size),
as_strings=True,
print_per_layer_stat=True,
verbose=True)
print('{:<30} {:<8}'.format('Computational complexity: ', flops))
print('{:<30} {:<8}'.format('Number of parameters: ', params))
def load_checkpoint():
pass
def save_checkpoint(epoch, model, optimizer, args, save_name='latest'):
if args.save_model and (not args.ddp or (args.ddp and args.local_rank == 0)):
state_dict = {
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
torch.save(state_dict, os.path.join(args.path_log, 'fold%s_%s.pth' % (args.fold, save_name)))
@torch.no_grad()
def smooth_one_hot(target: torch.Tensor, num_classes: int, smoothing=0.0):
"""
if smoothing == 0, it's one-hot method
if 0 < smoothing < 1, it's smooth method
"""
assert 0 <= smoothing < 1
confidence = 1.0 - smoothing
true_dist = target.new_zeros(size=(len(target), num_classes)).float()
true_dist.fill_(smoothing / (num_classes - 1))
true_dist.scatter_(1, target.data.unsqueeze(1), confidence)
return true_dist
def reduce_value(value, average=True):
if dist.is_available() and dist.is_initialized():
world_size = dist.get_world_size()
if world_size < 2: # single gpu
return value
with torch.no_grad():
dist.all_reduce(value) # sum
if average:
value /= world_size # mean
return value
def create_logging(log_file=None, log_level=logging.INFO, file_mode='a'):
"""Initialize and get a logger.
If the logger has not been initialized, this method will initialize the
logger by adding one or two handlers, otherwise the initialized logger will
be directly returned. During initialization, a StreamHandler will always be
added. If `log_file` is specified and the process rank is 0, a FileHandler
will also be added.
Args:
log_file (str | None): The log filename. If specified, a FileHandler
will be added to the logger.
log_level (int): The logger level. Note that only the process of
rank 0 is affected, and other processes will set the level to
"Error" thus be silent most of the time.
file_mode (str): The file mode used in opening log file.
Defaults to 'w'.
Returns:
logging.Logger: The expected logger.
"""
logger = logging.getLogger()
handlers = []
stream_handler = logging.StreamHandler()
handlers.append(stream_handler)
if dist.is_available() and dist.is_initialized():
rank = dist.get_rank()
else:
rank = 0
# only rank 0 will add a FileHandler
if rank == 0 and log_file is not None:
# Here, the default behaviour of the official logger is 'a'. Thus, we
# provide an interface to change the file mode to the default
# behaviour.
file_handler = logging.FileHandler(log_file, file_mode)
handlers.append(file_handler)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
for handler in handlers:
handler.setFormatter(formatter)
handler.setLevel(log_level)
logger.addHandler(handler)
if rank == 0:
logger.setLevel(log_level)
else:
logger.setLevel(logging.ERROR)
return logger
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1, )):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].float().sum()
res.append(correct_k.mul_(1.0 / batch_size))
return res
def adjust_learning_rate(optimizer, epoch, args):
# epoch >= 1
assert args.scheduler in ['step', 'cos']
if epoch <= args.warmup:
lr = args.lr * (epoch / (args.warmup + 1))
elif args.scheduler == 'step':
exp = 0
for mile_stone in args.schedule:
if epoch > mile_stone:
exp += 1
lr = args.lr * (args.lr_decay**exp)
elif args.scheduler == 'cos':
decay_rate = 0.5 * (1 + np.cos((epoch - 1) * np.pi / args.epoch))
lr = args.lr * decay_rate
else:
raise NotImplementedError
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def lr_scheduler(optimizer, scheduler, schedule, lr_decay, total_epoch):
optimizer.zero_grad()
optimizer.step()
if scheduler == 'step':
return optim.lr_scheduler.MultiStepLR(optimizer, schedule, gamma=lr_decay)
elif scheduler == 'cos':
return optim.lr_scheduler.CosineAnnealingLR(optimizer, total_epoch)
else:
raise NotImplementedError('{} learning rate is not implemented.')
def mixed_criterion(criterion, pred, y_a, y_b, lam):
return lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b)
class Compose(object):
"""Composes several transforms together.
Args:
transforms (list of ``Transform`` objects): list of transforms to compose.
Example:
>>> transforms.Compose([
>>> transforms.CenterCrop(10),
>>> transforms.ToTensor(),
>>> ])
"""
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img: torch.Tensor):
for t in self.transforms:
img = t(img)
return img
def __repr__(self):
format_string = self.__class__.__name__ + '('
for t in self.transforms:
format_string += '\n'
format_string += ' {0}'.format(t)
format_string += '\n)'
return format_string
class Lighting(object):
"""Lighting noise(AlexNet - style PCA - based noise)"""
def __init__(self, alphastd, eigval, eigvec):
self.alphastd = alphastd
self.eigval = torch.Tensor(eigval)
self.eigvec = torch.Tensor(eigvec)
def __call__(self, img: torch.Tensor):
if self.alphastd == 0:
return img
alpha = img.new().resize_(3).normal_(0, self.alphastd)
rgb = self.eigvec.type_as(img).clone().mul(alpha.view(1, 3).expand(3, 3)).mul(
self.eigval.view(1, 3).expand(3, 3)).sum(1).squeeze()
return img.add(rgb.view(3, 1, 1).expand_as(img))
class Grayscale(object):
def __call__(self, img: torch.Tensor):
gs = img.clone()
gs[0].mul_(0.2989).add_(gs[1], alpha=0.587).add_(gs[2], alpha=0.114)
gs[1].copy_(gs[0])
gs[2].copy_(gs[0])
return gs
class Saturation(object):
def __init__(self, var):
self.var = var
def __call__(self, img: torch.Tensor):
gs = Grayscale()(img)
alpha = random.uniform(-self.var, self.var)
return img.lerp(gs, alpha)
class Brightness(object):
def __init__(self, var):
self.var = var
def __call__(self, img: torch.Tensor):
gs = img.new().resize_as_(img).zero_()
alpha = random.uniform(-self.var, self.var)
return img.lerp(gs, alpha)
class Contrast(object):
def __init__(self, var):
self.var = var
def __call__(self, img: torch.Tensor):
gs = Grayscale()(img)
gs.fill_(gs.mean())
alpha = random.uniform(-self.var, self.var)
return img.lerp(gs, alpha)
class ColorJitter(object):
def __init__(self, brightness=0.4, contrast=0.4, saturation=0.4):
self.brightness = brightness
self.contrast = contrast
self.saturation = saturation
def __call__(self, img: torch.Tensor):
self.transforms = []
if self.brightness != 0:
self.transforms.append(Brightness(self.brightness))
if self.contrast != 0:
self.transforms.append(Contrast(self.contrast))
if self.saturation != 0:
self.transforms.append(Saturation(self.saturation))
random.shuffle(self.transforms)
transform = Compose(self.transforms)
return transform(img)
def mixup(x, y, alpha=0.4):
index = torch.randperm(x.size(0)).to(x.device)
lam = np.random.beta(alpha, alpha)
x = lam * x + (1 - lam) * x[index]
y = lam * y + (1 - lam) * y[index]
return x, y
def cutmix(x, y, alpha=1.0):
def rand_bbox(size, alpha):
H = size[2]
W = size[3]
cut_rat = np.sqrt(1. - np.random.beta(alpha, alpha))
cut_w = np.int(W * cut_rat)
cut_h = np.int(H * cut_rat)
# uniform
cx = np.random.randint(W)
cy = np.random.randint(H)
bbx1 = np.clip(cx - cut_w // 2, 0, W)
bby1 = np.clip(cy - cut_h // 2, 0, H)
bbx2 = np.clip(cx + cut_w // 2, 0, W)
bby2 = np.clip(cy + cut_h // 2, 0, H)
return bbx1, bby1, bbx2, bby2
index = torch.randperm(x.size(0)).to(x.device)
bbx1, bby1, bbx2, bby2 = rand_bbox(x.size(), alpha)
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (x.size()[-1] * x.size()[-2]))
x[:, :, bby1:bby2, bbx1:bbx2] = x[index, :, bby1:bby2, bbx1:bbx2]
y = lam * y + (1 - lam) * y[index]
return x, y
def recursive_mix(x, old_x, y, old_y, alpha, interpolate_mode):
def rand_bbox(size, alpha):
H = size[2]
W = size[3]
cut_rat = np.sqrt(random.uniform(0.0, alpha))
cut_w = np.int(W * cut_rat)
cut_h = np.int(H * cut_rat)
# uniform
cx = np.random.randint(W)
cy = np.random.randint(H)
bbx1 = np.clip(cx - cut_w // 2, 0, W)
bby1 = np.clip(cy - cut_h // 2, 0, H)
bbx2 = np.clip(cx + cut_w // 2, 0, W)
bby2 = np.clip(cy + cut_h // 2, 0, H)
return bbx1, bby1, bbx2, bby2
bbx1, bby1, bbx2, bby2 = rand_bbox(x.size(), alpha)
size = (bby2 - bby1, bbx2 - bbx1)
bs = x.size(0)
if size != (0, 0):
align_corners = None if interpolate_mode == 'nearest' else True
x[:, :, bby1:bby2, bbx1:bbx2] = F.interpolate(old_x[:bs],
size=size,
mode=interpolate_mode,
align_corners=align_corners)
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (x.size()[-1] * x.size()[-2]))
y = lam * y + (1 - lam) * old_y[:bs]
boxes = torch.Tensor([bbx1, bby1, bbx2, bby2]).float().to(x.device)
boxes = boxes[None].expand(bs, 4)
return x, y, boxes, lam