-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathQASM.v
499 lines (464 loc) · 16.7 KB
/
QASM.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
Require Import Reals.
Require Import String.
Require Import HOASCircuits.
Require Import HOASExamples.
Require Import DBCircuits.
Require Import Arith.
Require Import List.
(* QASM.v - representation of QASM circuits *)
Definition id := string.
Inductive bexp : Type :=
| BTrue : bexp
| BFalse : bexp
| BI : string -> bexp
| BNot : bexp -> bexp
| BAnd : bexp -> bexp -> bexp
.
Inductive binop : Set :=
| plus | minus
| times | div
| pow
.
Inductive unaryop : Set :=
| sin
| cos
| tan | e_to | ln | sqrt
| neg
.
Inductive exp : Set :=
| e_real (r:R)
| e_nat (n:nat)
| e_pi
| e_id (name:id)
| e_binop (e1:exp) (b:binop) (e2:exp)
| e_unop (u:unaryop) (e:exp)
.
Inductive argument : Set :=
| a_id (n:id)
| a_idx (n:id) (i:nat)
.
Definition idlist := list id.
Definition anylist := list argument.
Definition explist := list exp.
Inductive uop : Set :=
| u_U (l:explist) (a:argument)
| u_CX (a1 a2:argument)
| u_app (i:id) (l:anylist)
| u_call (i:id) (es:explist) (l:anylist)
.
Inductive qop : Set :=
| q_uop (u:uop)
| q_meas (ain: argument) (aout: argument)
| q_reset (a:argument)
.
Inductive gop : Set :=
| g_uop (u:uop)
| g_barrier (ids:idlist)
.
Definition goplist := list gop. (* Nonempty? *)
Inductive decl : Set :=
| qreg (name:id) (size:nat)
| creg (name:id) (size:nat)
.
(*
gatedecl
gate FOO ( ... ) <...> { ... }
*)
Inductive statement : Set :=
| s_decl (d:decl)
(* TODO: what is the difference between args and names? are those the right terminology? *)
| s_gatedecl (name:id) (args:option idlist) (names:idlist) (body:goplist)
| s_opaque (name:id) (args:option idlist) (names:idlist)
| s_qop (q:qop)
| s_if (x:id) (n:nat) (q:qop)
| s_barrier (args:anylist)
| s_output (args:anylist)
| s_error (msg:string) (* msg explains about the compile error *)
.
Definition program := list statement.
Declare Scope qasm_scope.
Notation " b1 + b2 " := (e_binop b1 plus b2) (at level 50, left associativity)
: qasm_scope.
Notation " b1 - b2 " := (e_binop b1 minus b2) (at level 50, left associativity)
: qasm_scope.
Notation " b1 * b2 " := (e_binop b1 times b2) (at level 40, left associativity)
: qasm_scope.
Notation " b1 / b2 " := (e_binop b1 div b2) (at level 40, left associativity)
: qasm_scope.
Notation " - b " := (e_unop neg b) : qasm_scope.
Notation "0" := (e_nat 0) : qasm_scope.
Notation "2" := (e_nat 2) : qasm_scope.
Notation "4" := (e_nat 4) : qasm_scope.
Open Scope qasm_scope.
Notation pi := (e_pi).
Close Scope qasm_scope.
Open Scope R_scope.
Import ListNotations.
Require Import Notations.
Open Scope circ_scope.
(** Convert from Minimal Circuits to QASM **)
(* [Min Circuit] to [QASM] translation procedure
1. Transform [Unitary] gates into a sequence of universal gates (ROT3 and CNOT).
- See [min_circuit_translation_helper], [min_circuit_merge],
[unitary_gate_translation], [transpose_unitary_gate_circuit],
[append_gate_last], and [control_unitary_gate_circuit] functions.
2. Translate the circuit into [QASM] program
- See [trans], [trans'], [trans_exp], [pat_to_anylist], [meta_if],
[meta_if_true], and [meta_if_flase] functions.
*)
Locate "()".
Definition test01 : Box One (Bit ⊗ Bit) :=
box_ () ⇒
gate_ a ← init0 @();
gate_ b ← init1 @();
gate_ a' ← meas @a;
gate_ b' ← meas @b;
(a', b').
Definition test01_db := hoas_to_db_box test01.
Definition test10 : Box One (Bit ⊗ Bit) :=
box_ () ⇒
gate_ b ← init0 @();
gate_ a ← init1 @();
gate_ a' ← meas @a;
gate_ b' ← meas @b;
(a', b').
Definition test10_db := hoas_to_db_box test10.
Eval compute in test01_db.
Eval compute in test10_db.
(** Naming functions for qreg, creg, and bits **)
Require Import Ascii.
(* Nat to string converter *)
Definition natToDigit (n : nat) : ascii :=
match n with
| 0 => "0" | 1 => "1" | 2 => "2" | 3 => "3" | 4 => "4" | 5 => "5"
| 6 => "6" | 7 => "7" | 8 => "8" | _ => "9"
end.
Fixpoint writeNatAux (time n : nat) (acc : string) : string :=
let acc' := String (natToDigit (n mod 10)) acc in
match time with
| 0 => acc'
| S time' =>
match (n / 10)%nat with
| 0 => acc'
| n' => writeNatAux time' n' acc'
end
end.
Definition writeNat (n : nat) : string :=
writeNatAux n n "".
(* naming function for qregs *)
Definition qname : nat -> id := fun x => String (ascii_of_nat 113) (writeNat x).
(* naming function for cregs *)
Definition cname : nat -> id := fun x => String (ascii_of_nat 99) (writeNat x).
(* name of the [creg array] used for branching *)
Definition bname : id := "bits"%string.
(* naming function for ith element of bits *)
Definition bname_i : nat -> id := fun i => append "bits[" (append (writeNat i) "]").
Fixpoint get_var_name (li : list string) (x : nat) : string :=
match x with
| 0 => match li with
| [] => ""
| h :: t => h
end
| S x' => match li with
| [] => ""
| h :: t => get_var_name t x'
end
end.
Fixpoint add_var_name (li : list string) (name : string) : list string := li ++ [name].
Fixpoint put_var_name (li : list string) (x : nat) (name : string) : list string :=
match x with
| 0 => match li with
| [] => []
| h :: t => name :: t
end
| S x' => match li with
| [] => []
| h :: t => h :: (put_var_name t x' name)
end
end.
Fixpoint remove_var_name (li : list string) (x : nat) : list string :=
match x with
| 0 => match li with
| [] => []
| h :: t => t
end
| S x' => match li with
| [] => []
| h :: t => h :: (remove_var_name t x')
end
end.
Open Scope qasm_scope.
Fixpoint process_ctrl (p : program) (ctrl_name : string) : program :=
match p with
| [] => []
| h :: t =>
match h with
| s_if id val qop =>
match qop with
| q_uop (u_U [theta; phi; lambda] target_arg) =>
let c := (a_id ctrl_name) in
let t := target_arg in
[s_if id val (q_uop (u_U [0; 0; (lambda-phi)/2] t));
(* u1((lambda-phi)/2) t *)
s_if id val (q_uop (u_CX c t)); (* cx c,t *)
s_if id val (q_uop (u_U [-theta/2; 0; -(phi+lambda)/2] t));
(* u3(-theta/2,0,-(phi+lambda)/2) t *)
s_if id val (q_uop (u_CX c t)); (* cx c,t *)
s_if id val (q_uop (u_U [theta/2; phi; 0] t))]
(* u3(theta/2,phi,0) t *)
| q_uop (u_CX ctrl2_arg target_arg) =>
let a := (a_id ctrl_name) in
let b := ctrl2_arg in
let c := target_arg in
[s_if id val (q_uop (u_U [pi/2;0;pi] c)); (* h c *)
s_if id val (q_uop (u_CX b c)); (* cx b,c *)
s_if id val (q_uop (u_U [0;0;-pi/4] c)); (* tdg c *)
s_if id val (q_uop (u_CX a c)); (* cx a,c *)
s_if id val (q_uop (u_U [0;0;pi/4] c)); (* t c *)
s_if id val (q_uop (u_CX b c)); (* cx b,c *)
s_if id val (q_uop (u_U [0;0;-pi/4] c)); (* tdg c *)
s_if id val (q_uop (u_CX a c)); (* cx a,c *)
s_if id val (q_uop (u_U [0;0;pi/4] b)); (* t b *)
s_if id val (q_uop (u_U [0;0;pi/4] c)); (* t c *)
s_if id val (q_uop (u_U [pi/2;0;pi] c)); (* h c *)
s_if id val (q_uop (u_CX a b)); (* cx a,b *)
s_if id val (q_uop (u_U [0;0;pi/4] a)); (* t a *)
s_if id val (q_uop (u_U [0;0;-pi/4] b)); (* tdg b *)
s_if id val (q_uop (u_CX a b))] (* cx a,b *)
| _ => [s_error "db_gate Unitary ctrl process error"]
end
| s_qop qop =>
match qop with
| q_uop (u_U [theta; phi; lambda] target_arg) =>
let c := (a_id ctrl_name) in
let t := target_arg in
[s_qop (q_uop (u_U [0; 0; (lambda-phi)/2] t));
(* u1((lambda-phi)/2) t *)
s_qop (q_uop (u_CX c t)); (* cx c,t *)
s_qop (q_uop (u_U [-theta/2; 0; -(phi+lambda)/2] t));
(* u3(-theta/2,0,-(phi+lambda)/2) t *)
s_qop (q_uop (u_CX c t)); (* cx c,t *)
s_qop (q_uop (u_U [theta/2; phi; 0] t))] (* u3(theta/2,phi,0) t *)
| q_uop (u_CX ctrl2_arg target_arg) =>
let a := (a_id ctrl_name) in
let b := ctrl2_arg in
let c := target_arg in
[s_qop (q_uop (u_U [pi/2;0;pi] c)); (* h c *)
s_qop (q_uop (u_CX b c)); (* cx b,c *)
s_qop (q_uop (u_U [0;0;-pi/4] c)); (* tdg c *)
s_qop (q_uop (u_CX a c)); (* cx a,c *)
s_qop (q_uop (u_U [0;0;pi/4] c)); (* t c *)
s_qop (q_uop (u_CX b c)); (* cx b,c *)
s_qop (q_uop (u_U [0;0;-pi/4] c)); (* tdg c *)
s_qop (q_uop (u_CX a c)); (* cx a,c *)
s_qop (q_uop (u_U [0;0;pi/4] b)); (* t b *)
s_qop (q_uop (u_U [0;0;pi/4] c)); (* t c *)
s_qop (q_uop (u_U [pi/2;0;pi] c)); (* h c *)
s_qop (q_uop (u_CX a b)); (* cx a,b *)
s_qop (q_uop (u_U [0;0;pi/4] a)); (* t a *)
s_qop (q_uop (u_U [0;0;-pi/4] b)); (* tdg b *)
s_qop (q_uop (u_CX a b))] (* cx a,b *)
| _ => [s_error "db_gate Unitary ctrl process error"]
end
| _ => [s_error "db_gate Unitary ctrl process error"]
end ++ (process_ctrl t bname)
end.
Fixpoint process_transpose (p : program) : program :=
match p with
| [] => []
| h :: t =>
(process_transpose t)
++ match h with
| s_if id val qop =>
match qop with
| q_uop (u_U [theta; phi; lambda] target_name) =>
[s_if id val (q_uop (u_U [-theta; -phi; -lambda] target_name))]
| q_uop (u_CX ctrl2_name target_name) =>
[s_if id val (q_uop (u_CX ctrl2_name target_name))]
| _ => [s_error "db_gate Unitary transpose process error"]
end
| s_qop (q_uop (u_U [theta; phi; lambda] target_name)) =>
[s_qop (q_uop (u_U [-theta; -phi; -lambda] target_name))]
| s_qop (q_uop (u_CX ctrl2_name target_name)) =>
[s_qop (q_uop (u_CX ctrl2_name target_name))]
| _ => [s_error "db_gate Unitary transpose process error"]
end
end.
Open Scope type_scope.
Close Scope circ_scope.
Program Fixpoint unitary_to_qasm {W} (li : list string) (v : nat) (u : Unitary W) (p : Pat W) : (program * nat) :=
match u with
| _H =>
match p with
| qubit x => ([s_qop (q_uop (u_U [pi/2;0;pi] (a_id (get_var_name li x))))], v)
| unit | bit _ | pair _ _ => ([s_error "db_gate Unitary H error"], v)
end
| _X =>
match p with
| qubit x => ([s_qop (q_uop (u_U [pi;0;pi] (a_id (get_var_name li x))))], v)
| unit | bit _ | pair _ _ => ([s_error "db_gate Unitary X error"], v)
end
| _Y =>
match p with
| qubit x => ([s_qop (q_uop (u_U [pi;pi/2;pi/2] (a_id (get_var_name li x))))], v)
| unit | bit _ | pair _ _ => ([s_error "db_gate Unitary Y error"], v)
end
| _Z =>
match p with
| qubit x => ([s_qop (q_uop (u_U [0;0;pi] (a_id (get_var_name li x))))], v)
| unit | bit _ | pair _ _ => ([s_error "db_gate Unitary Z error"], v)
end
| _R_ phi =>
match p with
| qubit x => ([s_qop (q_uop (u_U [0;0;e_real phi] (a_id (get_var_name li x))))], v)
| unit | bit _ | pair _ _ => ([s_error "db_gate Unitary R error"], v)
end
| ctrl u' =>
match p with
| pair p1 p2 =>
match p1 with
| qubit x =>
let (qasm_unitary, v') := (unitary_to_qasm li v u' p2) in
((process_ctrl qasm_unitary (get_var_name li x)), v')
| unit | bit _ | pair _ _ => ([s_error "db_gate Unitary ctrl error"], v)
end
| unit | bit _ | qubit _ => ([s_error "db_gate Unitary ctrl error"], v)
end
| bit_ctrl u' =>
match p with
| pair p1 p2 =>
match p1 with
| bit x =>
let (qasm_unitary, v') := (unitary_to_qasm li (S v) u' p2) in
(([s_decl (qreg (qname v) 1);
s_if (get_var_name li x) 1
(q_uop (u_U [e_pi; e_nat 0; e_pi] (a_id (qname v))))]
++ (process_ctrl qasm_unitary (qname v))), v')
| unit | qubit _ | pair _ _ => ([s_error "db_gate Unitary bit_ctrl error"], v)
end
| unit | bit _ | qubit _ => ([s_error "db_gate Unitary bit_ctrl error"], v)
end
end.
Fixpoint pat_to_anylist {w} (li : list string) (p : Pat w) : anylist :=
match p with
| unit => []
| qubit x => [a_id (get_var_name li x)]
| bit x => [a_id (get_var_name li x)]
| pair p1 p2 => (pat_to_anylist li p1) ++ (pat_to_anylist li p2)
end.
Program Fixpoint db_to_qasm {w} (li : list string) (v : nat) (c : DeBruijn_Circuit w) : (program * nat) :=
match c with
| db_output p => ([s_output (pat_to_anylist li p)], v)
| db_gate g p c' =>
match g with
| U u =>
let (qasm_unitary, v') := (unitary_to_qasm li v u p) in
let (qasm_ramnent, v'') := (db_to_qasm li v' c') in
(qasm_unitary ++ qasm_ramnent, v'')
| BNOT =>
match p with
| bit x =>
let (qasm, v') := (db_to_qasm li (S v) c') in
([s_decl (qreg (qname v) 1);
s_if (get_var_name li x) 0
(q_uop (u_U [e_pi; e_nat 0; e_pi] (a_id (qname v))));
s_qop (q_meas (a_id (qname v)) (a_id (get_var_name li x)))]
++ qasm, v')
| unit | qubit _ | pair _ _ => ([s_error "db_gate NOT error"], v)
end
| init0 =>
match p with
| unit =>
let li' := add_var_name li (qname v) in
let (qasm, v') := (db_to_qasm li' (S v) c') in
(([s_decl (qreg (qname v) 1)] ++ qasm), v')
| bit _ | qubit _ | pair _ _ => ([s_error "db_gate init0 error"], v)
end
| init1 =>
match p with
| unit =>
let li' := add_var_name li (qname v) in
let (qasm, v') := (db_to_qasm li' (S v) c') in
(([s_decl (qreg (qname v) 1);
s_qop (q_uop (u_U [e_pi; e_nat 0; e_pi] (a_id (qname v))))]
++ qasm), v')
| bit _ | qubit _ | pair _ _ => ([s_error "db_gate init1 error"], v)
end
| new0 =>
match p with
| unit =>
let li' := add_var_name li (cname v) in
let (qasm, v') := (db_to_qasm li' (S v) c') in
(([s_decl (creg (cname v) 1)] ++ qasm), v')
| bit _ | qubit _ | pair _ _ => ([s_error "db_gate new0 error"], v)
end
| new1 =>
match p with
| unit =>
let li' := add_var_name li (cname v) in
let (qasm, v') := (db_to_qasm li' (S (S v)) c') in
(([s_decl (creg (cname v) 1);
s_decl (qreg (qname (S v)) 1);
s_qop (q_uop (u_U [e_pi; e_nat 0; e_pi] (a_id (qname (S v)))));
s_qop (q_meas (a_id (qname (S v))) (a_id (cname v)))]
++ qasm), v')
| bit _ | qubit _ | pair _ _ => ([s_error "db_gate new1 error"], v)
end
| meas =>
match p with
| qubit x =>
let li' := (put_var_name li x (cname v)) in
let (qasm, v') := (db_to_qasm li' (S v) c') in
(([s_decl (creg (cname v) 1);
s_qop (q_meas (a_id (get_var_name li x)) (a_id (cname v)))]
++ qasm), v')
| unit | bit _ | pair _ _ => ([s_error "db_gate meas error"], v)
end
| measQ =>
match p with
| qubit x =>
let (qasm, v') := (db_to_qasm li (S v) c') in
(([s_decl (creg (cname v) 1);
s_qop (q_meas (a_id (get_var_name li x)) (a_id (cname v)))]
++ qasm), v')
| unit | bit _ | pair _ _ => ([s_error "db_gate measQ error"], v)
end
| discard =>
match p with
| bit x =>
let li' := (remove_var_name li x) in
(db_to_qasm li' v c')
| unit | qubit _ | pair _ _ => ([s_error "db_gate discard error"], v)
end
| assert0 | assert1 =>
match p with
| qubit x =>
let li' := (remove_var_name li x) in
(db_to_qasm li' v c')
| unit | bit _ | pair _ _ => ([s_error "db_gate assert error"], v)
end
end
| db_lift p f =>
match p with
| bit x =>
let (qasm_true, v') := db_to_qasm li (S v) (f true) in
let (qasm_false, v'') := db_to_qasm li v' (f false) in
(([s_decl (qreg (qname v) 1);
s_if (get_var_name li x) 1
(q_uop (u_U [e_pi; e_nat 0; e_pi] (a_id (qname v))))]
++ (process_ctrl qasm_true (qname v))
++ [s_qop (q_uop (u_U [e_pi; e_nat 0; e_pi] (a_id (qname v))))]
++ (process_ctrl qasm_false (qname v))), v'')
| qubit _ | unit | pair _ _ => ([s_error "db_lift error"], v)
end
end.
Definition db_to_qasm_box {w1 w2} (b : DeBruijn_Box w1 w2) : program :=
match w1 with
| One =>
match b with
| db_box _ c => fst (db_to_qasm [] 0 c)
end
| _ => []
end.
Close Scope type_scope.
Close Scope qasm_scope.