-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKrushkal.java
126 lines (105 loc) · 3.25 KB
/
Krushkal.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
// // Kruskal's algorithm in Java
// // The steps for implementing Kruskal's algorithm are as follows:
// // Sort all the edges from low weight to high
// // Take the edge with the lowest weight and add it to the spanning tree. If adding the edge created a cycle, then reject this edge.
// // Keep adding edges until we reach all vertices.
// import java.util.*;
// class Graph {
// class Edge implements Comparable<Edge> {
// int src, dest, weight;
// public int compareTo(Edge compareEdge) {
// return this.weight - compareEdge.weight;
// }
// };
// // Union
// class subset {
// int parent, rank;
// };
// int vertices, edges;
// Edge edge[];
// // Graph creation
// Graph(int v, int e) {
// vertices = v;
// edges = e;
// edge = new Edge[edges];
// for (int i = 0; i < e; ++i)
// edge[i] = new Edge();
// }
// int find(subset subsets[], int i) {
// if (subsets[i].parent != i)
// subsets[i].parent = find(subsets, subsets[i].parent);
// return subsets[i].parent;
// }
// void Union(subset subsets[], int x, int y) {
// int xroot = find(subsets, x);
// int yroot = find(subsets, y);
// if (subsets[xroot].rank < subsets[yroot].rank)
// subsets[xroot].parent = yroot;
// else if (subsets[xroot].rank > subsets[yroot].rank)
// subsets[yroot].parent = xroot;
// else {
// subsets[yroot].parent = xroot;
// subsets[xroot].rank++;
// }
// }
// // Applying Krushkal Algorithm
// void KruskalAlgo() {
// Edge result[] = new Edge[vertices];
// int e = 0;
// int i = 0;
// for (i = 0; i < vertices; ++i)
// result[i] = new Edge();
// // Sorting the edges
// Arrays.sort(edge);
// subset subsets[] = new subset[vertices];
// for (i = 0; i < vertices; ++i)
// subsets[i] = new subset();
// for (int v = 0; v < vertices; ++v) {
// subsets[v].parent = v;
// subsets[v].rank = 0;
// }
// i = 0;
// while (e < vertices - 1) {
// Edge next_edge = new Edge();
// next_edge = edge[i++];
// int x = find(subsets, next_edge.src);
// int y = find(subsets, next_edge.dest);
// if (x != y) {
// result[e++] = next_edge;
// Union(subsets, x, y);
// }
// }
// for (i = 0; i < e; ++i)
// System.out.println(result[i].src + " - " + result[i].dest + ": " + result[i].weight);
// }
// public static void main(String[] args) {
// int vertices = 6; // Number of vertices
// int edges = 8; // Number of edges
// Graph G = new Graph(vertices, edges);
// G.edge[0].src = 0;
// G.edge[0].dest = 1;
// G.edge[0].weight = 4;
// G.edge[1].src = 0;
// G.edge[1].dest = 2;
// G.edge[1].weight = 4;
// G.edge[2].src = 1;
// G.edge[2].dest = 2;
// G.edge[2].weight = 2;
// G.edge[3].src = 2;
// G.edge[3].dest = 3;
// G.edge[3].weight = 3;
// G.edge[4].src = 2;
// G.edge[4].dest = 5;
// G.edge[4].weight = 2;
// G.edge[5].src = 2;
// G.edge[5].dest = 4;
// G.edge[5].weight = 4;
// G.edge[6].src = 3;
// G.edge[6].dest = 4;
// G.edge[6].weight = 3;
// G.edge[7].src = 5;
// G.edge[7].dest = 4;
// G.edge[7].weight = 3;
// G.KruskalAlgo();
// }
// }