-
Notifications
You must be signed in to change notification settings - Fork 0
/
avl_tree_p2b.h
561 lines (502 loc) · 13.6 KB
/
avl_tree_p2b.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
/*
TITLE: avl_tree_p2b.j
NAME : INGMAR FJOLLA
PROFESSOR: ANITA RAJA
HW 2 Question 2 Part 2b
THE purpose of this part of the project is to modify the avl tree class to help us with the testtree.cc
file.
*/
#ifndef AVL_TREE_H
#define AVL_TREE_H
#include "dsexceptions.h"
#include <algorithm>
#include <cmath>
#include <iostream>
using namespace std;
// AvlTree class
//
// CONSTRUCTION: zero parameter
//
// ******************PUBLIC OPERATIONS*********************
// void insert( x ) --> Insert x
// void remove( x ) --> Remove x (unimplemented)
// bool contains( x ) --> Return true if x is present
// Comparable findMin( ) --> Return smallest item
// Comparable findMax( ) --> Return largest item
// boolean isEmpty( ) --> Return true if empty; else false
// void makeEmpty( ) --> Remove all items
// void printTree( ) --> Print tree in sorted order
// ******************ERRORS********************************
// Throws UnderflowException as warranted
template <typename Comparable>
class AvlTree
{
public:
AvlTree( ) : root{ nullptr }
{ }
AvlTree( const AvlTree & rhs ) : root{ nullptr }
{
root = clone( rhs.root );
}
AvlTree( AvlTree && rhs ) : root{ rhs.root }
{
rhs.root = nullptr;
}
~AvlTree( )
{
makeEmpty( );
}
/**
* Deep copy.
*/
AvlTree & operator=( const AvlTree & rhs )
{
AvlTree copy = rhs;
std::swap( *this, copy );
return *this;
}
/**
* Move.
*/
AvlTree & operator=( AvlTree && rhs )
{
std::swap( root, rhs.root );
return *this;
}
/**
* Find the smallest item in the tree.
* Throw UnderflowException if empty.
*/
const Comparable & findMin( ) const
{
if( isEmpty( ) )
throw UnderflowException{ };
return findMin( root )->element;
}
/**
* Find the largest item in the tree.
* Throw UnderflowException if empty.
*/
const Comparable & findMax( ) const
{
if( isEmpty( ) )
throw UnderflowException{ };
return findMax( root )->element;
}
/**
* Returns true if x is found in the tree.
*/
bool contains( const Comparable & x ) const
{
return contains( x, root );
}
/**
* Test if the tree is logically empty.
* Return true if empty, false otherwise.
*/
bool isEmpty( ) const
{
return root == nullptr;
}
/**
* Print the tree contents in sorted order.
*/
void printTree( ) const
{
if( isEmpty( ) )
cout << "Empty tree" << endl;
else
printTree( root );
}
/**
* Make the tree logically empty.
*/
void makeEmpty( )
{
makeEmpty( root );
}
/**
* Insert x into the tree; duplicates are ignored.
*/
void insert( const Comparable & x )
{
insert( x, root );
}
/**
* Insert x into the tree; duplicates are ignored.
*/
void insert( Comparable && x )
{
insert( std::move( x ), root );
}
/**
* Remove x from the tree. Nothing is done if x is not found.
*/
void remove( const Comparable & x )
{
remove( x, root );
}
/**
* this is the public member driver for the private function
* returns a copy of the element
*/
Comparable find(const Comparable &x)
{
return find(x, root);
}
//Return the number of nodes in the entire tree acts as a driver
int numberOfNodes(){
return numberOfNodes(root);
}
/**
* Returns the average path depth, acts as a driver
*/
float avgDepth()
{
return avgDepth(root);
}
/**
* Returns the reatio with log2n
*/
float avgDepthRatio()
{
return avgDepthRatio(root);
}
/**
* Returns the number of times find() has recurred
*/
float getRecursiveFinds()
{
return total_recursion_calls;
}
float getRecursiveRemoves()
{
return remove_recursion;
}
/**
rests the total recusive calls
*/
void makerecursionzero()
{
total_recursion_calls = 0;
}
private:
struct AvlNode
{
Comparable element;
AvlNode *left;
AvlNode *right;
int height;
AvlNode( const Comparable & ele, AvlNode *lt, AvlNode *rt, int h = 0 )
: element{ ele }, left{ lt }, right{ rt }, height{ h } { }
AvlNode( Comparable && ele, AvlNode *lt, AvlNode *rt, int h = 0 )
: element{ std::move( ele ) }, left{ lt }, right{ rt }, height{ h } { }
};
AvlNode *root;
float total_recursion_calls = 0;
size_t number_of_remove_calls =0;
int remove_recursion = 0;
/**
* Internal method to insert into a subtree.
* x is the item to insert.
* t is the node that roots the subtree.
* Set the new root of the subtree.
*/
void insert( const Comparable & x, AvlNode * & t )
{
if( t == nullptr )
t = new AvlNode{ x, nullptr, nullptr };
else if( x < t->element )
insert( x, t->left );
else if( t->element < x )
insert( x, t->right );
else{
t->element.Merge(x);
}
balance( t );
}
/**
* Internal method to insert into a subtree.
* x is the item to insert.
* t is the node that roots the subtree.
* Set the new root of the subtree.
*/
void insert( Comparable && x, AvlNode * & t )
{
if( t == nullptr )
t = new AvlNode{ std::move( x ), nullptr, nullptr };
else if( x < t->element )
insert( std::move( x ), t->left );
else if( t->element < x )
insert( std::move( x ), t->right );
balance( t );
}
/**
* Internal method to remove from a subtree.
* x is the item to remove.
* t is the node that roots the subtree.
* Set the new root of the subtree.
*/
void remove( const Comparable & x, AvlNode * & t )
{
//remove_recursion++;
if( t == nullptr )
return; // Item not found; do nothing
if( x < t->element ){
remove_recursion++;
remove( x, t->left );
}
else if( t->element < x ){
remove_recursion++;
remove( x, t->right );
}
else if( t->left != nullptr && t->right != nullptr ) // Two children
{
remove_recursion++;
t->element = findMin( t->right )->element;
remove( t->element, t->right );
}
else
{
AvlNode *oldNode = t;
t = ( t->left != nullptr ) ? t->left : t->right;
delete oldNode;
}
balance( t );
}
static const int ALLOWED_IMBALANCE = 1;
// Assume t is balanced or within one of being balanced
void balance( AvlNode * & t )
{
if( t == nullptr )
return;
if( height( t->left ) - height( t->right ) > ALLOWED_IMBALANCE ) {
if( height( t->left->left ) >= height( t->left->right ) )
rotateWithLeftChild( t );
else
doubleWithLeftChild( t );
} else if( height( t->right ) - height( t->left ) > ALLOWED_IMBALANCE ) {
if( height( t->right->right ) >= height( t->right->left ) )
rotateWithRightChild( t );
else
doubleWithRightChild( t );
}
t->height = max( height( t->left ), height( t->right ) ) + 1;
}
/**
* Internal method to find the smallest item in a subtree t.
* Return node containing the smallest item.
*/
AvlNode * findMin( AvlNode *t ) //const
{
remove_recursion++;
if( t == nullptr )
return nullptr;
if( t->left == nullptr )
return t;
return findMin( t->left );
}
/**
* Internal method to find the largest item in a subtree t.
* Return node containing the largest item.
*/
AvlNode * findMax( AvlNode *t ) const
{
if( t != nullptr )
while( t->right != nullptr )
t = t->right;
return t;
}
/**
* Internal method to test if an item is in a subtree.
* x is item to search for.
* t is the node that roots the tree.
*/
bool contains( const Comparable & x, AvlNode *t ) const
{
if( t == nullptr )
return false;
else if( x < t->element )
return contains( x, t->left );
else if( t->element < x )
return contains( x, t->right );
else
return true; // Match
}
Comparable find(const Comparable &x, AvlNode *t)
{
//only need to do this once
total_recursion_calls++;
if (t == nullptr)
{
//good method i learned in b lab
return Comparable("not important","Not Found");
}
else if (x < t->element)
{
return find(x, t->left);
}
else if (t->element < x)
{
return find(x, t->right);
}
else
{
return t->element; // Match
}
}
/*Private method used after the driver */
size_t numberOfNodes(AvlNode *t){
if (t == nullptr)
return 0;
else
return(numberOfNodes(t->left) + 1 + numberOfNodes(t->right));
}
/**
* Internal method for calculating path length
*/
float pathLength(AvlNode *t, float x)
{
if (t->right == nullptr && t->left == nullptr)
{
return x;
}
if (t->right == nullptr)
{
return x + pathLength(t->left, x + 1);
}
else if (t->left == nullptr)
{
return x + pathLength(t->right, x + 1);
}
else
{
return x + pathLength(t->right, x + 1) + pathLength(t->left, x + 1);
}
}
/**
* private method for calculating average depth
*/
float avgDepth(AvlNode *t)
{
return (pathLength(t, 0) / this->numberOfNodes());
}
/**
* Internal method for calculating average depth ratio
*/
float avgDepthRatio(AvlNode *t)
{
return avgDepth(t) / log2(this->numberOfNodes(t));
}
/****** NONRECURSIVE VERSION*************************
bool contains( const Comparable & x, AvlNode *t ) const
{
while( t != nullptr )
if( x < t->element )
t = t->left;
else if( t->element < x )
t = t->right;
else
return true; // Match
return false; // No match
}
*****************************************************/
/**
* Internal method to make subtree empty.
*/
void makeEmpty( AvlNode * & t )
{
if( t != nullptr )
{
makeEmpty( t->left );
makeEmpty( t->right );
delete t;
}
t = nullptr;
}
/**
* Internal method to print a subtree rooted at t in sorted order.
*/
void printTree( AvlNode *t ) const
{
if( t != nullptr )
{
printTree( t->left );
cout << t->element << endl;
printTree( t->right );
}
}
/**
* Internal method to clone subtree.
*/
AvlNode * clone( AvlNode *t ) const
{
if( t == nullptr )
return nullptr;
else
return new AvlNode{ t->element, clone( t->left ), clone( t->right ), t->height };
}
// Avl manipulations
/**
* Return the height of node t or -1 if nullptr.
*/
int height( AvlNode *t ) const
{
return t == nullptr ? -1 : t->height;
}
int max( int lhs, int rhs ) const
{
return lhs > rhs ? lhs : rhs;
}
/**
* Rotate binary tree node with left child.
* For AVL trees, this is a single rotation for case 1.
* Update heights, then set new root.
*/
void rotateWithLeftChild( AvlNode * & k2 )
{
AvlNode *k1 = k2->left;
k2->left = k1->right;
k1->right = k2;
k2->height = max( height( k2->left ), height( k2->right ) ) + 1;
k1->height = max( height( k1->left ), k2->height ) + 1;
k2 = k1;
}
/**
* Rotate binary tree node with right child.
* For AVL trees, this is a single rotation for case 4.
* Update heights, then set new root.
*/
void rotateWithRightChild( AvlNode * & k1 )
{
AvlNode *k2 = k1->right;
k1->right = k2->left;
k2->left = k1;
k1->height = max( height( k1->left ), height( k1->right ) ) + 1;
k2->height = max( height( k2->right ), k1->height ) + 1;
k1 = k2;
}
/**
* Double rotate binary tree node: first left child.
* with its right child; then node k3 with new left child.
* For AVL trees, this is a double rotation for case 2.
* Update heights, then set new root.
*/
void doubleWithLeftChild( AvlNode * & k3 )
{
rotateWithRightChild( k3->left );
rotateWithLeftChild( k3 );
}
/**
* Double rotate binary tree node: first right child.
* with its left child; then node k1 with new right child.
* For AVL trees, this is a double rotation for case 3.
* Update heights, then set new root.
*/
void doubleWithRightChild( AvlNode * & k1 )
{
rotateWithLeftChild( k1->right );
rotateWithRightChild( k1 );
}
};
#endif