-
Notifications
You must be signed in to change notification settings - Fork 2
/
utils.py
218 lines (189 loc) · 6.41 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import re
import sys
import json
import math
import time
import unicodedata
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import function
from tqdm import tqdm
from functools import partial
import jieba
import pickle
# def encode_dataset(*splits, encoder):
# encoded_splits = []
# for split in splits[0]:
# fields = []
# for field in split:
# if isinstance(field[0], str):
# field = encoder.encode(field)
# fields.append(field)
# encoded_splits.append(fields)
# return encoded_splits
def load_pickle_dataset(data_path)
with open(data_path, "rb") as f:
return pickle.load(f)[:100]
def encode_dataset_lm(data_path, tokenizer, is_train=True):
with open(data_path, 'r') as fp:
if is_train:
sentences = fp.readlines()[:100]
else:
sentences = fp.readlines()[:100]
tokenized_sentence = []
for sent in sentences:
tokenized_sentence.append(tokenizer.tokenize(sent.strip()))
return tokenized_sentence
def stsb_label_encoding(labels, nclass=6):
"""
Label encoding from Tree LSTM paper (Tai, Socher, Manning)
"""
Y = np.zeros((len(labels), nclass)).astype(np.float32)
for j, y in enumerate(labels):
for i in range(nclass):
if i == np.floor(y) + 1:
Y[j,i] = y - np.floor(y)
if i == np.floor(y):
Y[j,i] = np.floor(y) - y + 1
return Y
# def shape_list(x):
# """
# deal with dynamic shape in tensorflow cleanly
# """
# ps = x.get_shape().as_list()
# ts = tf.shape(x)
# return [ts[i] if ps[i] is None else ps[i] for i in range(len(ps))]
# GPT-2 version
def shape_list(x):
"""Deal with dynamic shape in tensorflow cleanly."""
static = x.shape.as_list()
dynamic = tf.shape(x)
return [dynamic[i] if s is None else s for i, s in enumerate(static)]
def np_softmax(x, t=1):
x = x/t
x = x - np.max(x, axis=-1, keepdims=True)
ex = np.exp(x)
return ex/np.sum(ex, axis=-1, keepdims=True)
def make_path(f):
d = os.path.dirname(f)
if d and not os.path.exists(d):
os.makedirs(d)
return f
def _identity_init(shape, dtype, partition_info, scale):
n = shape[-1]
w = np.eye(n)*scale
if len([s for s in shape if s != 1]) == 2:
w = w.reshape(shape)
return w.astype(np.float32)
def identity_init(scale=1.0):
return partial(_identity_init, scale=scale)
def _np_init(shape, dtype, partition_info, w):
return w
def np_init(w):
return partial(_np_init, w=w)
class ResultLogger(object):
def __init__(self, path, *args, **kwargs):
if 'time' not in kwargs:
kwargs['time'] = time.time()
self.f_log = open(make_path(path), 'w')
self.f_log.write(json.dumps(kwargs)+'\n')
def log(self, **kwargs):
if 'time' not in kwargs:
kwargs['time'] = time.time()
self.f_log.write(json.dumps(kwargs)+'\n')
self.f_log.flush()
def close(self):
self.f_log.close()
def find_trainable_variables(key):
return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, ".*{}.*".format(key))
def flatten(outer):
return [el for inner in outer for el in inner]
def remove_none(l):
return [e for e in l if e is not None]
# def iter_data(*datas, n_batch=128, truncate=False, verbose=False, max_batches=float("inf")):
# n = len(datas[0])
# if truncate:
# n = (n//n_batch)*n_batch
# n = min(n, max_batches*n_batch)
# n_batches = 0
# if verbose:
# f = sys.stderr
# else:
# f = open(os.devnull, 'w')
# for i in tqdm(range(0, n, n_batch), total=n//n_batch, file=f, ncols=80, leave=False):
# if n_batches >= max_batches: raise StopIteration
# if len(datas) == 1:
# yield datas[0][i:i+n_batch]
# else:
# yield (d[i:i+n_batch] for d in datas)
# n_batches += 1
def iter_data_lm(*datas, n_batch=128, truncate=False, verbose=False, max_batches=float("inf")):
n = len(datas[0])
if truncate:
n = (n//n_batch)*n_batch
n = min(n, max_batches*n_batch)
n_batches = 0
if verbose:
f = sys.stderr
else:
f = open(os.devnull, 'w')
for i in tqdm(range(0, n, n_batch), total=n//n_batch, file=f, ncols=80, leave=False):
if n_batches >= max_batches: raise StopIteration
if len(datas) == 1:
yield datas[0][i:i+n_batch]
else:
yield (d[i:i+n_batch] for d in datas)
n_batches += 1
@function.Defun(
python_grad_func=lambda x, dy: tf.convert_to_tensor(dy),
shape_func=lambda op: [op.inputs[0].get_shape()])
def convert_gradient_to_tensor(x):
"""force gradient to be a dense tensor
it's often faster to do dense embedding gradient on GPU than sparse on CPU
"""
return x
def assign_to_gpu(gpu=0, ps_dev="/device:CPU:0"):
def _assign(op):
node_def = op if isinstance(op, tf.NodeDef) else op.node_def
if node_def.op == "Variable":
return ps_dev
else:
return "/gpu:%d" % gpu
return _assign
def average_grads(tower_grads):
def average_dense(grad_and_vars):
if len(grad_and_vars) == 1:
return grad_and_vars[0][0]
grad = grad_and_vars[0][0]
for g, _ in grad_and_vars[1:]:
grad += g
return grad / len(grad_and_vars)
def average_sparse(grad_and_vars):
if len(grad_and_vars) == 1:
return grad_and_vars[0][0]
indices = []
values = []
for g, _ in grad_and_vars:
indices += [g.indices]
values += [g.values]
indices = tf.concat(indices, 0)
values = tf.concat(values, 0)
return tf.IndexedSlices(values, indices, grad_and_vars[0][0].dense_shape)
# values_ltj = grad_and_vars[0][0].values
# for g, _ in grad_and_vars[1:]:
# values_ltj += g.values
# values_ltj = values_ltj / len(grad_and_vars)
# return values_ltj
average_grads = []
for grad_and_vars in zip(*tower_grads):
if grad_and_vars[0][0] is None:
grad = None
elif isinstance(grad_and_vars[0][0], tf.IndexedSlices):
grad = average_sparse(grad_and_vars)
else:
grad = average_dense(grad_and_vars)
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads