Skip to content

Latest commit

 

History

History

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

MiniCPM

In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM models on Intel GPUs. For illustration purposes, we utilize the openbmb/MiniCPM-2B-sft-bf16 and openbmb/MiniCPM-1B-sft-bf16 (or OpenBMB/MiniCPM-2B-sft-bf16 and OpenBMB/MiniCPM-1B-sft-bf16 for ModelScope) as a reference MiniCPM model.

0. Requirements

To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to here for more information.

Example: Predict Tokens using generate() API

In the example generate.py, we show a basic use case for a MiniCPM model to predict the next N tokens using generate() API, with IPEX-LLM INT4 optimizations on Intel GPUs.

1. Install

1.1 Installation on Linux

We suggest using conda to manage environment:

conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install "transformers>=4.36"

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0

1.2 Installation on Windows

We suggest using conda to manage environment:

conda create -n llm python=3.11 libuv
conda activate llm

# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install "transformers>=4.36"

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0

2. Configures OneAPI environment variables for Linux

Note

Skip this step if you are running on Windows.

This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.

source /opt/intel/oneapi/setvars.sh

3. Runtime Configurations

For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.

3.1 Configurations for Linux

For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
For Intel Data Center GPU Max Series
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1

Note: Please note that libtcmalloc.so can be installed by conda install -c conda-forge -y gperftools=2.10.

For Intel iGPU
export SYCL_CACHE_PERSISTENT=1

3.2 Configurations for Windows

For Intel iGPU and Intel Arc™ A-Series Graphics
set SYCL_CACHE_PERSISTENT=1

Note

For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.

4. Running examples

# for Hugging Face model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT

# for ModelScope model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --modelscope

Arguments info:

  • --repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the Hugging Face or ModelScope repo id for the MiniCPM model (e.g. openbmb/MiniCPM-2B-sft-bf16 or openbmb/MiniCPM-1B-sft-bf16) to be downloaded, or the path to the checkpoint folder. It is default to be 'openbmb/MiniCPM-2B-sft-bf16' for Hugging Face and 'OpenBMB/MiniCPM-2B-sft-bf16' for ModelScope.
  • --prompt PROMPT: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be 'What is AI?'.
  • --n-predict N_PREDICT: argument defining the max number of tokens to predict. It is default to be 32.
  • --modelscope: using ModelScope as model hub instead of Hugging Face.

Sample Output

Inference time: xxxx s
-------------------- Prompt --------------------
<用户>what is AI?<AI>
-------------------- Output --------------------
<s> <用户>what is AI?<AI> AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. It is a field of computer science
-------------------- Prompt --------------------
<用户>What is AI?<AI>
-------------------- Output --------------------
<s> <用户>What is AI?<AI> Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. It involves the development of computer systems that