-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
chat.py
69 lines (55 loc) · 2.33 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This would makes sure Python is aware there is more than one sub-package within bigdl,
# physically located elsewhere.
# Otherwise there would be module not found error in non-pip's setting as Python would
# only search the first bigdl package and end up finding only one sub-package.
import argparse
import warnings
from langchain.chains import LLMChain
from langchain_community.llms import IpexLLM
from langchain_core.prompts import PromptTemplate
warnings.filterwarnings("ignore", category=UserWarning, message=".*padding_mask.*")
def main(args):
question = args.question
model_path = args.model_path
# Below is the prompt format for LLaMa-2 according to
# https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
# If you're using a different language model,
# please adjust the template according to its own model card.
template = """<s>[INST] <<SYS>>\n \n<</SYS>>\n\n{question} [/INST]"""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm = IpexLLM.from_model_id(
model_id=model_path,
model_kwargs={
"temperature": 0,
"max_length": 64,
"trust_remote_code": True,
"device": "xpu",
},
)
llm_chain = prompt | llm
output = llm_chain.invoke(question)
print("====output=====")
print(output)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='TransformersLLM Langchain Chat Example')
parser.add_argument('-m','--model-path', type=str, required=True,
help='the path to transformers model')
parser.add_argument('-q', '--question', type=str, default='What is AI?',
help='qustion you want to ask.')
args = parser.parse_args()
main(args)