1515# -*- coding: utf-8 -*-
1616#
1717
18+
1819version : ' 3'
1920services :
2021 classical-ml :
2122 build :
2223 args :
2324 BASE_IMAGE : ${BASE_IMAGE:-ubuntu}
2425 BASE_TAG : ${BASE_TAG:-22.04}
25- DPNP_VERSION : ${NUMBA_DPEX_VERSION:-0.14.0}
26- IDP_VERSION : ${IDP_VERSION:-2024.1.0}
26+ DAAL4PY_VERSION : ${DAAL4PY_VERSION:-2024.5.0}
27+ DPNP_VERSION : ${DPNP_VERSION:-0.15.0}
28+ IDP_VERSION : ${IDP_VERSION:-2024.2}
2729 INTEL_CHANNEL : ${INTEL_CHANNEL:-https://software.repos.intel.com/python/conda/}
28- MINIFORGE_VERSION : ${MINIFORGE_VERSION:-Linux-x86_64}
29- MODIN_VERSION : ${MODIN_VERSION:-0.26.1 }
30- MPI_VERSION : ${MPI_VERSION:-2021.12.0 }
31- NUMBA_DPEX_VERSION : ${NUMBA_DPEX_VERSION:-0.22.1 }
30+ MINIFORGE_VERSION : ${MINIFORGE_VERSION:-Miniforge3- Linux-x86_64}
31+ MODIN_VERSION : ${MODIN_VERSION:-0.30.0 }
32+ MPI_VERSION : ${MPI_VERSION:-2021.13 }
33+ NUMBA_DPEX_VERSION : ${NUMBA_DPEX_VERSION:-0.23.0 }
3234 NUMPY_VERSION : ${NUMPY_VERSION:-1.26.4}
33- PYTHON_VERSION : ${PYTHON_VERSION:-3.10 }
34- SKLEARNEX_VERSION : ${SKLEARNEX_VERSION:-2024.2 .0}
35+ PYTHON_VERSION : ${PYTHON_VERSION:-3.9 }
36+ SKLEARNEX_VERSION : ${SKLEARNEX_VERSION:-2024.5 .0}
3537 XGBOOST_VERSION : ${XGBOOST_VERSION:-2.0.3}
3638 http_proxy : ${http_proxy}
3739 https_proxy : ${https_proxy}
3840 no_proxy : ' '
3941 context : .
42+ target : classical-ml
4043 labels :
4144 docs : classical_ml
4245 org.opencontainers.image.title : " Intel® AI Tools Selector Preset Containers - Classical ML"
4346 org.opencontainers.base.name : " ubuntu:22.04"
4447 org.opencontainers.image.name : " intel/classical-ml"
45- org.opencontainers.image.version : 2024.1 .0-py${PYTHON_VERSION:-3.10 }
46- dependency.python : ${PYTHON_VERSION:-3.10 }
48+ org.opencontainers.image.version : 2024.2 .0-py${PYTHON_VERSION:-3.9 }
49+ dependency.python : ${PYTHON_VERSION:-3.9 }
4750 dependency.python.pip : requirements.txt
4851 dependency.apt.bzip2 : true
4952 dependency.apt.ca-certificates : true
@@ -57,43 +60,36 @@ services:
5760 dependency.apt.unzip : true
5861 dependency.apt.wget : true
5962 dependency.apt.xz-utils : true
60- dependency.conda.jupyterlab : ' >=4.1.8'
61- dependency.conda.notebook : ' >=7.1.3'
62- dependency.conda.jupyterhub : ' >=4.1.5'
63- dependency.conda.jupyter-server-proxy : ' >=4.1.2'
64- dependency.conda.mako : ' >=1.2.2'
65- dependency.conda.pyjwt : ' >=2.4.0'
66- dependency.conda.cryptography : ' >=42.0.5'
67- dependency.conda.nodejs : ' >=20.12.2'
68- dependency.conda.aiohttp : ' >=3.9.4'
69- dependency.conda.idna : ' >=3.7'
70- dependency.conda.oauthlib : ' >=3.2.2'
71- dependency.conda.dpnp : ' >=0.14.0'
72- dependency.conda.numpy : ' >=1.26.4'
73- dependency.conda.python : " =${PYTHON_VERSION:-3.10}"
74- dependency.conda.scikit-learn-intelex : ' >=2024.2.0'
75- dependency.conda.xgboost : ' >=2.0.3'
76- dependency.conda.modin-ray : ' >=0.26.1'
77- dependency.conda.python-dotenv : ' >=1.0.1'
78- dependency.conda.tqdm : ' >=4.66.2'
79- dependency.conda.matplotlib-base : ' >=3.4.3'
80- dependency.conda.dataset_librarian : ' >=1.0.4'
81- dependency.conda.threadpoolctl : ' >=3.3.0'
82- dependency.conda.ipython : ' >=8.18.1'
83- dependency.conda.ipykernel : ' >=6.29.3'
84- dependency.conda.kernda : ' >=0.3.0'
85- dependency.conda.protobuf : ' >=4.24'
86- dependency.conda.pillow : ' >=10.2.0'
87- dependency.conda.tornado : ' >=6.3.3'
88- target : classical-ml-jupyter
89- command : |
90- bash -c "conda run -n classical-ml python -c 'import sklearn; import xgboost; print(\"SciKit:\", sklearn.__version__, \" XGBoost:\",xgboost.__version__)' && \
91- conda run -n classical-ml python -c 'import modin.pandas as pd, modin.config as cfg; cfg.Engine.put(\"Ray\"); df = pd.DataFrame([1]);print(df+1)'"
92- image : ${REGISTRY}/${REPO}:b-${GITHUB_RUN_NUMBER:-0}-classical-ml-2024.1.0-py${PYTHON_VERSION:-3.10}
63+ dependency.conda.colorama : ' ==0.4.6'
64+ dependency.conda.conda : ' ==24.5.0'
65+ dependency.conda.daal4py : ' =2024.5.0'
66+ dependency.conda.dpnp : ' =0.15.0'
67+ dependency.conda.ipykernel : ' ==6.29.5'
68+ dependency.conda.jupyterhub : ' ==5.1.0'
69+ dependency.conda.jupyter-server-proxy : ' ==4.3.0'
70+ dependency.conda.kernda : ' ==0.3.0'
71+ dependency.conda.mamba : ' ==1.5.8'
72+ dependency.conda.matplotlib-base : ' ==3.8.4'
73+ dependency.conda.modin-ray : ' =0.30.0'
74+ dependency.conda.networkx : ' ==3.3'
75+ dependency.conda.notebook : ' ==7.2.1'
76+ dependency.conda.pip : ' ==24.0'
77+ dependency.conda.python : ' ==3.10.14'
78+ dependency.conda.python-dotenv : ' ==1.0.1'
79+ dependency.conda.scikit-learn-intelex : ' =2024.5.0'
80+ dependency.conda.tqdm : ' ==4.66.4'
81+ dependency.conda.xgboost : ' =2.0.3'
82+ image : ${REGISTRY}/${REPO}:b-${GITHUB_RUN_NUMBER:-0}-classical-ml-${RELEASE:-2024.2.0}-py${PYTHON_VERSION:-3.9}
9383 environment :
9484 http_proxy : ${http_proxy}
9585 https_proxy : ${https_proxy}
9686 network_mode : host
9787 shm_size : 12GB
9888 volumes :
9989 - /dev/dri/by-path:/dev/dri/by-path
90+ command : >
91+ bash -c " conda run -n classical-ml python -c 'import sklearn;import xgboost;print(\"SciKit:\",
92+ sklearn.__version__, \" XGBoost:\", xgboost.__version__)' &&
93+
94+ conda run -n classical-ml python -c 'import modin.pandas as pd;import modin.config
95+ as cfg;cfg.Engine.put(\"Ray\");df = pd.DataFrame([1]);print(df+1)' "
0 commit comments