This repository has been archived by the owner on Jan 7, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathdeploy.py
executable file
·192 lines (166 loc) · 7.84 KB
/
deploy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
"""
Apache v2 license
Copyright (C) <2018-2021> Intel Corporation
SPDX-License-Identifier: Apache-2.0
"""
from __future__ import print_function
import os
import sys
import time
import logging as log
from argparse import ArgumentParser, SUPPRESS
import cv2
import numpy as np
from openvino.inference_engine import IECore
from utils.ctc_codec import ctc_codec
def build_argparser():
parser = ArgumentParser(add_help=False)
args = parser.add_argument_group('Options')
args.add_argument('-h', "--help", action='help', default=SUPPRESS,
help="Show this help message and exit")
args.add_argument('-lang', '--language', type=str, required=True, choices=['hctr'],
help="Required. Target model for different languages")
args.add_argument("-m", "--model", type=str, required=True,
help="Required. Path to an .xml file with a trained model")
args.add_argument("-i", "--input", type=str, required=True,
help="Required. Path to an image file")
args.add_argument("-d", "--device", type=str, default="CPU",
help="Optional. Specify the target device to infer on; "
"CPU, GPU, FPGA, HDDL, MYRIAD or HETERO: is acceptable. "
"The sample will look for a suitable plugin for device specified. "
"Default value is CPU")
args.add_argument("-ni", "--number_iter", type=int, default=20,
help="Optional. Number of inference iterations")
args.add_argument('-dm', '--decode-method', type=str, dest='method',
choices=['greedy-search', 'beam-search'],
default='greedy-search')
args.add_argument('-ss', '--skip-search', action='store_true', dest='skip_search',
help='whether skip high confidence characters when using beam search')
args.add_argument('-kp', '--kenlm-path', metavar='PATH', type=str, dest='kenlm_path',
help='ngram model for scoring in beam search')
args.add_argument('-utp', '--use-tfm-pred', action='store_true', dest='use_tfm_pred',
help='use transformer for candidates prediction')
args.add_argument('-uts', '--use-tfm-score', action='store_true', dest='use_tfm_score',
help='use transformer for scoring in beam search')
args.add_argument('-uov', '--use-openvino', action='store_true', dest='use_openvino',
help='use openvino for transformer inference in beam search')
args.add_argument('-tfm', '--transformer-model', metavar='DIR', type=str, dest='tfm_path',
help='path to transformer model')
args.add_argument('-bs', '--beam-size', type=int, default=10, dest='beam_size',
help='beam size in beam search')
args.add_argument('-sd', '--search-depth', type=int, default=10, dest='search_depth',
help='search depth (top-k) in beam search')
args.add_argument('-lp', '--lm-panelty', default=1.9, type=float, dest='lm_panelty',
help='panelty of language model scoring in beam search')
args.add_argument('-lb', '--len-bonus', default=5.7, type=float, dest='len_bonus',
help='length bonus of scoring in beam search')
return parser
def main():
log.basicConfig(format="[ %(levelname)s ] %(message)s", level=log.INFO, stream=sys.stdout)
args = build_argparser().parse_args()
model_xml = args.model
model_bin = os.path.splitext(model_xml)[0] + ".bin"
# Prepare the language specific information, characters list and codec method
model_characters = get_model_characters(args.language)
codec = ctc_codec(model_characters)
if args.method == 'beam-search':
codec.set_beam_search(args.skip_search,
ngram_path=args.kenlm_path,
tfm_path=args.tfm_path,
lm_panelty=args.lm_panelty,
len_bonus=args.len_bonus,
beam_size=args.beam_size,
search_depth=args.search_depth,
use_tfm_score=args.use_tfm_score,
use_tfm_pred=args.use_tfm_pred,
use_openvino=args.use_openvino
)
# Plugin initialization for specified device and load extensions library if specified
ie = IECore()
# Read IR
log.info("Loading network files...\n\t{}\n\t{}".format(model_xml, model_bin))
net = ie.read_network(model=model_xml, weights=model_bin)
if not (len(net.input_info.keys()) == 1):
raise AssertionError("Sample supports only single input topologies")
if not (len(net.outputs) == 1):
raise AssertionError("Sample supports only single output topologies")
log.info("Preparing input/output blobs...")
input_blob = next(iter(net.input_info))
output_blob = next(iter(net.outputs))
n, c, h, w = net.input_info[input_blob].input_data.shape
log.info("Loading model to the plugin...")
exec_net = ie.load_network(network=net, device_name=args.device)
# Read and pre-process input images (NOTE: image by image ONLY)
if os.path.isfile(args.input):
input_image = preprocess_input(args.input, height=h, width=w)
# Start sync inference
log.info("Starting inference ({} iterations)...".format(args.number_iter))
infer_time = []
for i in range(args.number_iter):
t0 = time.time()
res = exec_net.infer(inputs={input_blob: input_image})
res = res[output_blob]
res = codec.decode(res)
infer_time.append((time.time() - t0) * 1000)
log.info("Showing the prediction...\nfile:\t{}\npred:\t{}"
.format(args.input, res)
)
log.info("Average throughput: {} ms".format(
np.average(np.asarray(infer_time)))
)
else:
for img_file in os.listdir(args.input):
input_image = preprocess_input(
os.path.join(args.input, img_file),
height=h,
width=w
)
res = exec_net.infer(inputs={input_blob: input_image})
res = res[output_blob]
res = codec.decode(res)
log.info("Showing the prediction...\nfile:\t{}\npred:\t{}"
.format(img_file, res)
)
sys.exit()
def preprocess_input(image_file, height, width):
'''Transform the input image to the format of model required: fix height and width'''
src = cv2.imread(image_file)
if len(src.shape) == 3:
src = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
# Adjust height if needed
h, w = src.shape
if h != height:
ratio = w / h
th = height
tw = int(height * ratio)
src = cv2.resize(src, (tw, th), interpolation=cv2.INTER_AREA)
# Apply padding if needed
h, w = src.shape
pad_img = np.ones((h, width), dtype=np.uint8) * 255
if w >= width:
# ignore the right part which exceeds the model required
pad_img = src[:, :width]
else:
pad_img[:, :w] = src
# pad with the right border
pad_img[:, w:] = np.tile(src[:, [-1]], width - w)
# Normalize
norm_img = (pad_img - 127.5) / 127.5
return norm_img[None, None, :, :]
def get_model_characters(language):
'''Get specific model information: characters list'''
characters = ''
chars_list_file = ''
if language == 'hctr':
chars_list_file = './data/handwritten_ctr_data/chars_list.txt'
else:
raise ValueError(
'Model type: {} not supported'.format(language)
)
with open(chars_list_file, 'r') as f:
for line in f.readlines():
line = line.strip('\n')
characters += line
return characters
if __name__ == '__main__':
main()