-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsigmoid_classifier.py
356 lines (324 loc) · 15.6 KB
/
sigmoid_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
"""
Authors : inzapp
Github url : https://github.com/inzapp/sigmoid-classifier
Copyright 2021 inzapp Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"),
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
import cv2
import random
import warnings
import numpy as np
import silence_tensorflow.auto
import tensorflow as tf
from glob import glob
from tqdm import tqdm
from model import Model
from eta import ETACalculator
from live_plot import LivePlot
from generator import DataGenerator
from lr_scheduler import LRScheduler
from ace import AdaptiveCrossentropy
from ckpt_manager import CheckpointManager
class SigmoidClassifier(CheckpointManager):
def __init__(self,
train_image_path,
validation_image_path,
model_name,
input_shape,
lr,
lrf,
alpha,
gamma,
warm_up,
momentum,
batch_size,
iterations,
label_smoothing,
aug_brightness,
aug_contrast,
aug_rotate,
aug_h_flip,
lr_policy='step',
checkpoint_interval=0,
show_class_activation_map=False,
cam_activation_layer_name='cam_activation',
last_conv_layer_name='squeeze_conv'):
super().__init__()
assert checkpoint_interval == 0 or checkpoint_interval >= 1000
self.input_shape = input_shape
self.lr = lr
self.lrf = lrf
self.warm_up = warm_up
self.alpha = alpha
self.gamma = gamma
self.momentum = momentum
self.label_smoothing = label_smoothing
self.batch_size = batch_size
self.iterations = iterations
self.lr_policy = lr_policy
self.show_class_activation_map = show_class_activation_map
self.cam_activation_layer_name = cam_activation_layer_name
self.last_conv_layer_name = last_conv_layer_name
self.checkpoint_interval = checkpoint_interval
self.pretrained_iteration_count = 0
warnings.filterwarnings(action='ignore')
self.set_model_name(model_name)
if self.checkpoint_interval == 0:
self.checkpoint_interval = self.iterations
train_image_path = self.unify_path(train_image_path)
validation_image_path = self.unify_path(validation_image_path)
self.train_image_paths, train_class_names, _ = self.init_image_paths(train_image_path)
self.validation_image_paths, validation_class_names, self.include_unknown = self.init_image_paths(validation_image_path)
if len(self.train_image_paths) == 0:
print(f'no images in train_image_path : {train_image_path}')
exit(0)
if len(self.validation_image_paths) == 0:
print(f'no images in validation_image_path : {validation_image_path}')
exit(0)
self.class_names = validation_class_names
self.train_data_generator = DataGenerator(
root_path=train_image_path,
image_paths=self.train_image_paths,
input_shape=self.input_shape,
batch_size=self.batch_size,
class_names=train_class_names,
aug_brightness=aug_brightness,
aug_contrast=aug_contrast,
aug_rotate=aug_rotate,
aug_h_flip=aug_h_flip)
self.validation_data_generator = DataGenerator(
root_path=validation_image_path,
image_paths=self.validation_image_paths,
input_shape=self.input_shape,
batch_size=self.batch_size,
class_names=self.class_names)
self.train_data_generator_one_batch = DataGenerator(
root_path=train_image_path,
image_paths=self.train_image_paths,
input_shape=self.input_shape,
batch_size=1,
class_names=train_class_names)
self.validation_data_generator_one_batch = DataGenerator(
root_path=validation_image_path,
image_paths=self.validation_image_paths,
input_shape=self.input_shape,
batch_size=1,
class_names=self.class_names)
self.model = Model(
input_shape=self.input_shape,
num_classes=len(self.class_names),
last_conv_layer_name=last_conv_layer_name,
cam_activation_layer_name=cam_activation_layer_name).build()
def load_model(self, model_path):
if os.path.exists(model_path) and os.path.isfile(model_path):
self.pretrained_iteration_count = self.parse_pretrained_iteration_count(model_path)
self.model = tf.keras.models.load_model(model_path, compile=False)
else:
print(f'pretrained model not found : {model_path}')
exit(0)
def unify_path(self, path):
if path == '':
return path
path = path.replace('\\', '/')
if path.endswith('/'):
path = path[:-1]
return path
def init_image_paths(self, image_path):
include_unknown = False
dir_paths = sorted(glob(f'{image_path}/*'))
for i in range(len(dir_paths)):
dir_paths[i] = dir_paths[i].replace('\\', '/')
image_paths = []
class_counts = []
class_name_set = set()
unknown_class_count = 0
print('class image count')
for dir_path in dir_paths:
if not os.path.isdir(dir_path):
continue
dir_name = dir_path.split('/')[-1]
if dir_name[0] == '_':
print(f'class dir {dir_name} is ignored. dir_name[0] == "_"')
continue
if dir_name == 'unknown':
include_unknown = True
else:
class_name_set.add(dir_name)
cur_class_image_paths = glob(f'{dir_path}/**/*.jpg', recursive=True)
for i in range(len(cur_class_image_paths)):
cur_class_image_paths[i] = cur_class_image_paths[i].replace('\\', '/')
image_paths += cur_class_image_paths
cur_class_image_count = len(cur_class_image_paths)
if dir_name == 'unknown':
unknown_class_count = cur_class_image_count
else:
class_counts.append(cur_class_image_count)
print(f'class {dir_name} : {cur_class_image_count}')
print()
class_names = sorted(list(class_name_set))
total_data_count = float(sum(class_counts)) + unknown_class_count
return image_paths, class_names, include_unknown
@tf.function
def compute_gradient(self, model, optimizer, batch_x, y_true, loss_function):
with tf.GradientTape() as tape:
y_pred = self.model(batch_x, training=True)
loss = tf.reduce_mean(loss_function(y_true, y_pred))
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return loss
def draw_cam(self, x, label, window_size_h=512, alpha=0.6):
cam_activation_layer = self.model.get_layer(name=self.cam_activation_layer_name).output
activation_h, activation_w, activation_c = cam_activation_layer.shape[1:]
cam_model = tf.keras.Model(self.model.input, cam_activation_layer)
weights = np.asarray(self.model.get_layer(name=self.last_conv_layer_name).get_weights()[0].squeeze())
img_h, img_w, img_c = x.shape
activation_map = np.asarray(cam_model(x[tf.newaxis, ...], training=False)[0])
if img_c == 1:
x = np.concatenate([x, x, x], axis=-1)
image_grid = None
for idx, cls in enumerate(self.class_names):
org_image = x.copy()
if img_c == 3:
org_image = cv2.cvtColor(org_image, cv2.COLOR_RGB2BGR)
class_weights = weights[:, idx]
cam = np.zeros((activation_h, activation_w), dtype=np.float32)
for i in range(activation_c):
cam += class_weights[i] * activation_map[:, :, i]
cam = np.array(cam)
cam -= np.min(cam)
cam /= np.max(cam)
cam *= 255.0
cam = cam.astype(np.uint8)
cam = cv2.resize(cam, (img_w, img_h))
cam = cam[..., np.newaxis]
cam = np.concatenate([cam, cam, cam], axis=-1)
cam_jet = cv2.applyColorMap(cam, cv2.COLORMAP_JET)
cam_blended = cv2.addWeighted((org_image * 255).astype(np.uint8), alpha, cam_jet, (1 - alpha), 0)
label_box = np.zeros((img_h, 20, 3), dtype=np.float32) + float(label == idx)
label_box = (label_box * 255.0).astype(np.uint8)
org_image = (org_image * 255.0).astype(np.uint8)
grid_row = np.concatenate([label_box, org_image, cam, cam_jet, cam_blended], axis=1)
image_grid = np.append(image_grid, grid_row, axis=0) if image_grid is not None else grid_row.copy()
if window_size_h is not None:
image_grid = cv2.resize(image_grid, ((window_size_h * image_grid.shape[1]) // image_grid.shape[0], window_size_h))
cv2.imshow('cam', image_grid)
cv2.waitKey(1)
def print_loss(self, progress_str, loss):
print(f'\r{progress_str} loss => {loss:.4f}', end='')
def train(self):
if self.pretrained_iteration_count >= self.iterations:
print(f'pretrained iteration count {self.pretrained_iteration_count} is greater or equal than target iterations {self.iterations}')
exit(0)
self.model.summary()
print(f'\ntrain on {len(self.train_image_paths)} samples')
print(f'validate on {len(self.validation_image_paths)} samples\n')
optimizer = tf.keras.optimizers.Adam(learning_rate=self.lr, beta_1=self.momentum)
loss_function = AdaptiveCrossentropy(alpha=self.alpha, gamma=self.gamma, label_smoothing=self.label_smoothing)
lr_scheduler = LRScheduler(lr=self.lr, lrf=self.lrf, iterations=self.iterations, warm_up=self.warm_up, policy=self.lr_policy)
self.init_checkpoint_dir()
iteration_count = self.pretrained_iteration_count
eta_calculator = ETACalculator(iterations=self.iterations, start_iteration=iteration_count)
eta_calculator.start()
while True:
batch_x, batch_y = self.train_data_generator.load()
lr_scheduler.update(optimizer, iteration_count)
loss = self.compute_gradient(self.model, optimizer, batch_x, batch_y, loss_function)
if self.show_class_activation_map and iteration_count % 100 == 0:
try_count = 0
while True:
if try_count > len(batch_x):
break
rnum = random.randint(0, len(batch_x) - 1)
if np.all(batch_y[rnum] < 0.3): # skip cam view if unknown data
continue
else:
new_input_tensor = batch_x[rnum]
label_idx = np.argmax(batch_y[rnum]).item()
break
self.draw_cam(new_input_tensor, label_idx)
iteration_count += 1
progress_str = eta_calculator.update(iteration_count)
self.print_loss(progress_str, loss)
if iteration_count % 2000 == 0:
self.save_last_model(self.model, iteration_count)
if iteration_count >= int(self.iterations * self.warm_up) and iteration_count % self.checkpoint_interval == 0:
acc, class_score, unknown_score = self.evaluate()
content = f'_acc_{acc:.4f}_class_score_{class_score:.4f}'
if self.include_unknown:
content += f'_unknown_score_{unknown_score:.4f}'
self.save_best_model(self.model, iteration_count, content=content, metric=acc)
if iteration_count == self.iterations:
print('\ntrain end successfully')
break
def evaluate(self, dataset='validation', unknown_threshold=0.5):
assert dataset in ['train', 'validation']
if dataset == 'train':
data_generator = self.train_data_generator_one_batch
else:
data_generator = self.validation_data_generator_one_batch
@tf.function
def graph_forward(model, x):
return model(x, training=False)
print()
num_classes = self.model.output_shape[1]
hit_class_counts = np.zeros(shape=(num_classes,), dtype=np.int32)
total_class_counts = np.zeros(shape=(num_classes,), dtype=np.int32)
hit_class_score_sums = np.zeros(shape=(num_classes,), dtype=np.float32)
hit_unknown_count = 0
total_unknown_count = 0
hit_unknown_score_sum = 0.0
for _ in tqdm(range(len(data_generator))):
batch_x, batch_y = data_generator.load()
y = graph_forward(self.model, batch_x)[0]
max_score_index = np.argmax(y)
max_score = y[max_score_index]
if np.sum(batch_y[0]) == 0.0: # case unknown using zero label
total_unknown_count += 1
if max_score < unknown_threshold:
hit_unknown_count += 1
hit_unknown_score_sum += max_score
else: # case classification
true_class_index = np.argmax(batch_y[0])
total_class_counts[true_class_index] += 1
if max_score_index == true_class_index:
if self.include_unknown:
if max_score >= unknown_threshold:
hit_class_counts[true_class_index] += 1
hit_class_score_sums[true_class_index] += max_score
else:
hit_class_counts[true_class_index] += 1
hit_class_score_sums[true_class_index] += max_score
total_acc_sum = 0.0
class_score_sum = 0.0
for i in range(len(total_class_counts)):
cur_class_acc = hit_class_counts[i] / (float(total_class_counts[i]) + 1e-5)
cur_class_score = hit_class_score_sums[i] / (float(hit_class_counts[i]) + 1e-5)
total_acc_sum += cur_class_acc
class_score_sum += cur_class_score
print(f'[class {i:2d}] acc : {cur_class_acc:.4f}, score : {cur_class_score:.4f}')
valid_class_count = num_classes
unknown_score = 0.0
if self.include_unknown and total_unknown_count > 0:
unknown_acc = hit_unknown_count / float(total_unknown_count + 1e-5)
unknown_score = hit_unknown_score_sum / float(hit_unknown_count + 1e-5)
total_acc_sum += unknown_acc
valid_class_count += 1
print(f'[class unknown] acc : {unknown_acc:.4f}, score : {unknown_score:.4f}')
class_acc = total_acc_sum / valid_class_count
class_score = class_score_sum / num_classes
if self.include_unknown:
print(f'total accuracy with unknown threshold({unknown_threshold:.2f}) : {class_acc:.4f}, class_score : {class_score:.4f}, unknown_score : {unknown_score:.4f}\n')
else:
print(f'total accuracy : {class_acc:.4f}, class_score : {class_score:.4f}\n')
return class_acc, class_score, unknown_score