Skip to content
This repository was archived by the owner on Nov 21, 2021. It is now read-only.

Commit 71007eb

Browse files
committed
Update 7/23/2019
1 parent fc27df2 commit 71007eb

13 files changed

+7808
-1463
lines changed

.vscode/tags

Lines changed: 5114 additions & 0 deletions
Large diffs are not rendered by default.

_data/_effective_EvalAI.yaml

Lines changed: 37 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -411,3 +411,40 @@
411411
pubtime: '2019-07-06'
412412
note: 'The challenge data consists of a set of popular search queries and a fair size set of candidate documents. Challenge participants make a boolean relevant-or-not decision for each query-document pair. Human judgments are used to create labeled training and evaluation data for a subset of the query-document pairs. Evaluation of submissions will be based on the traditional F1 metric, incorporating components of both recall and precision.'
413413
prize: NaN
414+
415+
- id: AnimalAIOlympics
416+
type1:
417+
- PF
418+
- AC
419+
type2:
420+
- RL
421+
title: 'Animal-AI Olympics Competition'
422+
url: http://animalaiolympics.com
423+
hostby:
424+
- EvalAI: https://evalai.cloudcv.org/web/challenges/challenge-page/396/overview
425+
range: January - December, 2019
426+
deadtime: "2019-11-01 23:59:59"
427+
timezone: UTC
428+
pubtime: '2019-07-23'
429+
note: "The Animal-AI Olympics is an AI competition with tests inspired by animal cognition. Participants are given a small environment with just seven different classes of objects that can be placed inside. In each test, the agent needs to retrieve the food in the environment, but to do so there are obstacles to overcome, ramps to climb, boxes to push, and areas that must be avoided. The real challenge is that we don't provide the tests in advance. It's up to you to play with the environment and build interesting setups that can help create an agent that understands how the environment's physics work and the affordances that it has. The final submission should be an agent capable of robust food retrieval behaviour similar to that of many kinds of animals. We know the animals can pass these tests, it's time to see if AI can too. The Animal-AI Olympics is an AI competition with tests inspired by animal cognition. Participants are given a small environment with just seven different classes of objects that can be placed inside. In each test, the agent needs to retrieve the food in the environment, but to do so there are obstacles to overcome, ramps to climb, boxes to push, and areas that must be avoided. The real challenge is that we don't provide the tests in advance. It's up to you to play with the environment and build interesting setups that can help create an agent that understands how the environment's physics work and the affordances that it has. The final submission should be an agent capable of robust food retrieval behaviour similar to that of many kinds of animals. We know the animals can pass these tests, it's time to see if AI can too. "
430+
prize: NaN
431+
432+
433+
- id: Dunhuangimagerestoration
434+
type1:
435+
- PF
436+
- AC
437+
type2:
438+
- CV
439+
title: 'Dunhuang Image Restoration Challenge@ICCV2019 workshop on e-Heritage'
440+
url: http://www.eheritage-ws.org
441+
hostby:
442+
- EvalAI: https://evalai.cloudcv.org/web/challenges/challenge-page/402/
443+
- ICCV 2019: http://iccv2019.thecvf.com
444+
range: Jul 25 - Aug 16, 2019
445+
deadtime: "2019-08-16 23:59:59"
446+
timezone: UTC
447+
pubtime: '2019-07-23'
448+
note: 'In 1970s, the Dunhuang Academy is established to systematically preserve the heritage. From the study, half of them suffer from corrosion and aging. Because the paintings are created by different artists from 10 centuries, it is non-trivial for manual restoration. And therefore, we release the first Dunhuang Challenge with 600 paintings, which enables an open and public attention in the research community on data driven e-heritage restoration.
449+
<br>This year, the academy is proposing to collaborate with Microsoft Research and other researchers over the world, aiming to solve the automatic restoration of the wall painting using computer vision and machine learning technology.'
450+
prize: NaN

_data/_effective_codalab.yaml

Lines changed: 78 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -20,6 +20,84 @@
2020
prize: NaN
2121

2222

23+
- id: TweetQA
24+
type1:
25+
- PF
26+
- AC
27+
type2:
28+
- NLP
29+
title: TweetQA Competition
30+
url: https://tweetqa.github.io
31+
hostby:
32+
- CodaLab: https://competitions.codalab.org/competitions/20307
33+
range: July 20, 2019 - Never
34+
deadtime: 'No deadline'
35+
timezone: UTC
36+
pubtime: '2019-07-23'
37+
note: 'Unlike other QA datasets like SQuAD in which the answers are extractive, we allow the answers to be abstractive. The task requires model to read a short tweet and a question and outputs a text phrase (does not need to be in the tweet) as the answer.'
38+
prize: NaN
39+
40+
41+
42+
- id: AIM2019
43+
type1:
44+
- PF
45+
- AC
46+
type2:
47+
- CV
48+
title: 'AIM 2019 image manipulation challenges'
49+
url: http://www.vision.ee.ethz.ch/aim19/
50+
hostby:
51+
- CodaLab: https://competitions.codalab.org/
52+
- ICCV 2019: http://iccv2019.thecvf.com
53+
range: July 17, 2019 - Aug. 30, 2019
54+
deadtime: "2019-08-23 23:59:59"
55+
timezone: UTC
56+
pubtime: '2019-07-23'
57+
note: 'Advances in Image Manipulation workshop and challenges on image and video manipulation in conjunction with ICCV 2019.
58+
<br>AIM 2019 image manipulation challenges:
59+
<br><a href="https://competitions.codalab.org/competitions/20156">Bokeh Effect Challenge: Track 1 Fidelity</a>;
60+
<br><a href="https://competitions.codalab.org/competitions/20157">Bokeh Effect Challenge: Track 2 Perceptual</a>;
61+
<br><a href="https://competitions.codalab.org/competitions/20158">RAW-to-RGB Mapping Challenge: Track 1 Fidelity</a>;
62+
<br><a href="https://competitions.codalab.org/competitions/20159">RAW-to-RGB Mapping Challenge: Track 2 Perceptual</a>;
63+
<br><a href="https://competitions.codalab.org/competitions/20163">Real World Super-Resolution Challenge: Track 1 Same Domain</a>;
64+
<br><a href="https://competitions.codalab.org/competitions/20164">Real World Super-Resolution Challenge: Track 2 Target Domain</a>;
65+
<br><a href="https://competitions.codalab.org/competitions/20165">Demoireing Challenge: Track 1 Fidelity</a>;
66+
<br><a href="https://competitions.codalab.org/competitions/20166">Demoireing Challenge: Track 2 Perceptual</a>;
67+
<br><a href="https://competitions.codalab.org/competitions/20167">Constrained Super-Resolution Challenge: Track 1 Parameters optimization</a>;
68+
<br><a href="https://competitions.codalab.org/competitions/20168">Constrained Super-Resolution Challenge: Track 2 Inference optimization</a>;
69+
<br><a href="https://competitions.codalab.org/competitions/20169">Constrained Super-Resolution Challenge: Track 3 Fidelity optimization</a>;
70+
<br><a href="https://competitions.codalab.org/competitions/20235">Extreme Super-Resolution Challenge: Track 1 Fidelity</a>;
71+
<br><a href="https://competitions.codalab.org/competitions/20236">Extreme Super-Resolution Challenge: Track 2 Perceptual</a>;
72+
<br>AIM 2019 video manipulation challenges:
73+
<br><a href="https://competitions.codalab.org/competitions/20246">Video Quality Mapping Challenge : Track 1 Supervised</a>;
74+
<br><a href="https://competitions.codalab.org/competitions/20247">Video Quality Mapping Challenge : Track 2 Unsupervised</a>;
75+
<br><a href="https://competitions.codalab.org/competitions/20248">Video Extreme Super-Resolution Challenge: Track 1 Fidelity</a>;
76+
<br><a href="https://competitions.codalab.org/competitions/20249">Video Extreme Super-Resolution Challenge: Track 2 Perceptual</a>;
77+
<br><a href="https://competitions.codalab.org/competitions/20244">Video Temporal Super-Resolution Challenge</a>;
78+
'
79+
prize: NaN
80+
81+
82+
- id: VoxCeleb
83+
type1:
84+
- PF
85+
- AC
86+
type2:
87+
- SP
88+
- CV
89+
title: The VoxCeleb Speaker Recognition Challenge
90+
url: http://www.robots.ox.ac.uk/~vgg/data/voxceleb/competition.html
91+
hostby:
92+
- CodaLab: https://competitions.codalab.org/competitions/20199
93+
range: July 15, 2019 - Sep. 14, 2019
94+
deadtime: "2019-08-15 23:59:59"
95+
timezone: UTC
96+
pubtime: '2019-07-23'
97+
note: "The goal of this challenge is to probe how well current methods can recognize speakers from speech obtained 'in the wild'. The challenge will consists of the following two tasks:
98+
<br>Audio only speaker verification - Fixed training data: This task requires that participants train only on the VoxCeleb2 dev dataset for which we have already released speaker verification labels. The dev dataset contains 1,092,009 utterances from 5,994 speakers.
99+
<br>Audio only speaker verification - Open training data: For the open training condition, participants can use the VoxCeleb datasets and any other data (including that which is not publicly released) except the challenge's test data"
100+
prize: NaN
23101

24102
- id: Reconstruction2D3D
25103
type1:

_data/_effective_dcjingsai.yaml

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -3,6 +3,8 @@
33

44
# dcjingsai ##
55
# http://www.dcjingsai.com/
6+
7+
68
- id: IEEE_ISI_World_Cup_2019
79
type1:
810
- AC

_data/_effective_grand_challenge.yaml

Lines changed: 18 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -464,6 +464,24 @@
464464
prize: NaN
465465

466466

467+
- id: AASCE2019
468+
type1:
469+
- PF
470+
- AC
471+
type2:
472+
- CV
473+
title: 'Accurate Automated Spinal Curvature Estimation'
474+
url: https://aasce19.grand-challenge.org
475+
hostby:
476+
- Grand Challenges: https://aasce19.grand-challenge.org
477+
- MICCAI 2019: https://www.miccai2019.org
478+
range: July 8 - Aug 20, 2019
479+
deadtime: '2019-08-20 23:59:59'
480+
timezone: UTC
481+
pubtime: '2019-07-23'
482+
note: 'The goal of MICCAI 2019 Challenge on accurate automated spinal curvature estimation and error correction from x-ray images is to investigate (semi-)automatic spinal curvature estimation algorithms and provide a standard evaluation framework with a set of x-ray images. '
483+
prize: NaN
484+
467485
# TBA
468486
# - id: age_grand2019
469487
# type1:

_data/_effective_kaggle.yaml

Lines changed: 54 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,60 @@
22
# https://www.kaggle.com/competitions
33

44

5+
- id: kuzushiji-recognition
6+
type1:
7+
- PF
8+
- AC
9+
type2:
10+
- NLP
11+
title: 'Kuzushiji Recognition'
12+
url: 'https://www.kaggle.com/c/kuzushiji-recognition'
13+
hostby:
14+
- Kaggle: https://www.kaggle.com/
15+
range: Now - October 14, 2019
16+
deadtime: "2019-10-07 23:59:59"
17+
timezone: UTC
18+
pubtime: '2019-07-23'
19+
note: 'Opening the door to a thousand years of Japanese culture'
20+
prize: $15,000
21+
22+
23+
- id: ieee-fraud-detection
24+
type1:
25+
- PF
26+
- AC
27+
type2:
28+
- DM
29+
title: 'IEEE-CIS Fraud Detection'
30+
url: 'https://www.kaggle.com/c/ieee-fraud-detection'
31+
hostby:
32+
- Kaggle: https://www.kaggle.com/
33+
- IEEE-CIS: https://cis.ieee.org
34+
range: Now - October 1, 2019
35+
deadtime: "2019-09-24 23:59:59"
36+
timezone: UTC
37+
pubtime: '2019-07-23'
38+
note: 'Can you detect fraud from customer transactions?'
39+
prize: $25,000
40+
41+
- id: open-images-2019-instance-segmentation
42+
type1:
43+
- PF
44+
- AC
45+
type2:
46+
- CV
47+
title: 'Open Images 2019 - Instance Segmentation'
48+
url: 'https://www.kaggle.com/c/open-images-2019-instance-segmentation'
49+
hostby:
50+
- Kaggle: https://www.kaggle.com/
51+
- ICCV 2019: http://iccv2019.thecvf.com
52+
range: Now - October 27, 2019
53+
deadtime: "2019-09-24 23:59:59"
54+
timezone: UTC
55+
pubtime: '2019-07-23'
56+
note: 'Outline segmentation masks of objects in images'
57+
prize: $20,000
58+
559

660
- id: generative-dog-images
761
type1:

_data/_effective_others.yaml

Lines changed: 65 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -618,6 +618,71 @@
618618
prize: 40,000 元 x 2
619619

620620

621+
- id: zhijiangbei2019
622+
type1:
623+
- PF
624+
type2:
625+
- CV
626+
- DM
627+
- NLP
628+
title: '2019之江杯全球人工智能大赛'
629+
url: http://aicup2019.zhejianglab.com
630+
hostby:
631+
- 之江实验室: http://www.zhejianglab.com
632+
range: 2019-07-17 至 2019-09-30
633+
deadtime: "2019-08-31 23:59:59"
634+
timezone: "Asia/Shanghai"
635+
pubtime: '2019-07-23'
636+
note: '随着新一轮世界科技革命和产业变革的孕育兴起,人工智能已经成为当前信息技术和未来科技高端发展的重要方向。为激发广大科研人员人工智能创业者参与人工智能前沿理论和算法研究的热情,之江实验室举办2019之江杯全球人工智能大赛,以“以赛引才、以赛促研、以赛兴业”为基本思路,聚焦人工智能“基础研究”+“产融结合”,促进我国人工智能发展走在世界前列引领科技发展潮流。
637+
<br><a href="https://zhejianglab.aliyun.com/entrance/231734/introduction?spm=5176.12281949.1003.1.2b58c341xkeLkZ">视频描述生成</a>: 本赛题为视频描述(Video Caption),视频描述的输入是一段视频,输出是描述视频主要故事的一段文本。
638+
<br><a href="https://zhejianglab.aliyun.com/entrance/231733/introduction?spm=5176.12281949.1003.2.2b58c341xkeLkZ">行人多目标跟踪</a>: 主要任务是给定一个图像序列,找到图像序列中运动的物体,对目标进行定位,并将不同帧中的同一行人一一对应,记录其ID,然后给出不同物体的运动轨迹。
639+
<br><a href="https://zhejianglab.aliyun.com/entrance/231732/introduction?spm=5176.12281949.1003.3.2b58c341xkeLkZ">零样本目标检测</a>: 零样本目标检测(zero-shot object detection)竞赛的任务是在已知类别上训练目标检测模型,但要求模型能够用于检测测试图片中未知类别的对象。
640+
<br><a href="https://zhejianglab.aliyun.com/entrance/231731/introduction?spm=5176.12281949.1003.4.2b58c341xkeLkZ">电商评论观点挖掘</a>: 本次品牌评论观点挖掘的任务是在商品评论中抽取商品属性特征和消费者观点,并确认其情感极性和属性种类。
641+
'
642+
prize: 大赛总奖金池超过260万元
643+
644+
645+
- id: AIIA2019
646+
type1:
647+
- PF
648+
type2:
649+
- CV
650+
- DM
651+
title: '2019 AIIA杯人工智能巡回赛 中国移动“家·网”赛站'
652+
url: http://aiia.cmri.cn
653+
hostby:
654+
- 中国移动: http://open.home.10086.cn/
655+
range: 7月4-9月 2019
656+
deadtime: "2019-08-04 23:59:59"
657+
timezone: "Asia/Shanghai"
658+
pubtime: '2019-07-23'
659+
note: '结合中国移动在AI领域的研发布局,本次“家·网”赛站的主题是智慧家庭和智慧网络,希望借助AI技术构建数字家庭生态,打造动态高效的智能网络。
660+
<br><a href="http://open.home.10086.cn/hack/#/protal">智慧家庭赛题</a>
661+
<br><a href="http://aiia.cmri.cn/index/content_page">智慧网络赛题</a>: 任务一:网络流量预测; 任务二:无线侧故障根因分析;
662+
'
663+
prize: 240,000 元
664+
665+
666+
667+
- id: quanqiushujuziyuankaifazhe
668+
type1:
669+
- PF
670+
type2:
671+
- DM
672+
title: '全球数据资源开发者大赛'
673+
url: https://wdd.datarda.com/index
674+
hostby:
675+
- 杭州市人民政府: http://www.hangzhou.gov.cn
676+
range: 2月28-12月28 2019
677+
deadtime: "2019-10-01 23:59:59"
678+
timezone: "Asia/Shanghai"
679+
pubtime: '2019-07-23'
680+
note: '
681+
<br>中国移动专题赛: 赛题一:ETC便民服务群体挖掘; 赛题二:企业人才结构变化预测;
682+
<br>行业算法赛: 赛题一:楼盘精准推荐模型; 赛题二:社区独居老人识别与居民用能数据分析; 赛题三:移动办事服务的用户行为预测;
683+
'
684+
prize: TBA
685+
621686

622687
# http://www.prcv2019.com/竞赛通知.html
623688
# http://spiechallenges.cloudapp.net/competitions/

_data/_effective_天池.yaml

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -3,6 +3,22 @@
33
# https://tianchi.aliyun.com/competition
44

55

6+
- id: alibabazhilianzhaopin
7+
type1:
8+
- PF
9+
type2:
10+
- DM
11+
title: '阿里巴巴大数据智能云上编程大赛 —— 智联招聘人岗智能匹配'
12+
url: https://tianchi.aliyun.com/competition/entrance/231728/introduction
13+
hostby:
14+
- 天池: 'https://tianchi.aliyun.com/'
15+
range: 7月24日 - 9月21, 2019
16+
deadtime: "2019-08-20 09:59:59"
17+
timezone: "Asia/Shanghai"
18+
pubtime: '2019-07-23'
19+
note: '本次大赛要求参赛者根据智联招聘抽样的经过脱敏的求职者标签数据、职位信息、及部分求职者行为信息、用人单位反馈信息,训练排序模型,对求职者的职位候选集进行排序,尽可能使得双端都满意的职位(求职者满意以及用人单位满意)优先推荐。本次比赛里,假定对于曝光给求职者的职位候选集里,假如求职者感兴趣会产生浏览职位行为,浏览职位后,如果求职者满意会产生主动投递行为。用人单位收到求职者主动投递的简历后会给出是否满意的反馈信号。'
20+
prize: ¥300000
21+
622

723
- id: zhongjianjian
824
type1:

_data/_hosts.yaml

Lines changed: 20 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -42,12 +42,23 @@
4242
- id: crowdai
4343
type1:
4444
- PF
45-
title: crowdAI
45+
title: crowdAI (shutting down)
4646
url: https://www.crowdai.org
4747
logo: https://i.loli.net/2019/02/10/5c5fab0aa7cc0.png
4848
descri: "crowdAI is a platform for open data science challenges. crowdAI helps universities, government agencies, NGOs, or businesses to run and manage their data challenges. The crowdAI platform is a non-profit, open source infrastructure that can immediately reach thousands of data scientists around the world to work on interesting data problems."
4949

5050

51+
- id: aicrowd
52+
type1:
53+
- PF
54+
title: AIcrowd
55+
url: https://www.aicrowd.com
56+
logo: https://i.loli.net/2019/07/23/5d36619fc463991441.png
57+
descri: 'AIcrowd is a platform for streamlining your AI workflow - internally, or externally, by running AI, machine learning, and other data science challenges. AIcrowd helps organizations - whether businesses, universities, government agencies or NGOs - develop, manage, and promote their challenges. '
58+
59+
60+
61+
5162
- id: EvalAI
5263
type1:
5364
- PF
@@ -303,6 +314,14 @@
303314
descri: 'iChallenge is set up to share high-quality labeled and annotated imaging data of ophthalmology, to enhance communication between different researchers (not only computer scientists but also clinicians) and to promote development of automatic algorithms in <b>diagnosis and image segmentation</b>.
304315
<br>Contact: ai@baidu.com'
305316

317+
- id: baiduaistudio
318+
type1:
319+
- PF
320+
title: 'Baidu大脑 | AI Studio'
321+
url: https://aistudio.baidu.com/aistudio/index
322+
logo: https://i.loli.net/2019/07/23/5d371b5fc124b88704.png
323+
descri: 'AI Studio是基于百度深度学习平台飞桨的一站式AI开发平台,提供在线编程环境、免费GPU算力、海量开源算法和开放数据,帮助开发者快速创建和部署模型。'
324+
306325

307326
- id: jdata
308327
type1:

0 commit comments

Comments
 (0)