-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathdouble_pads_sim.py
188 lines (169 loc) · 8.36 KB
/
double_pads_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# This code is part of KQCircuits
# Copyright (C) 2022 IQM Finland Oy
#
# This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
# License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
# warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with this program. If not, see
# https://www.gnu.org/licenses/gpl-3.0.html.
#
# The software distribution should follow IQM trademark policy for open-source software
# (meetiqm.com/iqm-open-source-trademark-policy). IQM welcomes contributions to the code.
# Please see our contribution agreements for individuals (meetiqm.com/iqm-individual-contributor-license-agreement)
# and organizations (meetiqm.com/iqm-organization-contributor-license-agreement).
import logging
import sys
from pathlib import Path
import numpy as np
from kqcircuits.qubits.double_pads import DoublePads
from kqcircuits.simulations.post_process import PostProcess
from kqcircuits.simulations.single_element_simulation import get_single_element_sim_class
from kqcircuits.pya_resolver import pya
from kqcircuits.simulations.export.ansys.ansys_export import export_ansys
from kqcircuits.simulations.export.elmer.elmer_export import export_elmer
from kqcircuits.simulations.export.simulation_export import export_simulation_oas
from kqcircuits.util.export_helper import (
create_or_empty_tmp_directory,
get_active_or_new_layout,
open_with_klayout_or_default_application,
)
sim_tools = ["elmer", "eigenmode", "q3d"]
for sim_tool in sim_tools:
# Simulation parameters
sim_class = get_single_element_sim_class(DoublePads) # pylint: disable=invalid-name
sim_parameters = {
"name": "double_pads",
"use_internal_ports": True,
"use_ports": True,
"face_stack": ["1t1"],
"box": pya.DBox(pya.DPoint(0, 0), pya.DPoint(2000, 2000)),
"separate_island_internal_ports": sim_tool != "eigenmode", # DoublePads specific
"tls_layer_thickness": 5e-3 if sim_tool == "eigenmode" else 0.0, # in µm
"tls_sheet_approximation": sim_tool == "eigenmode",
"waveguide_length": 200,
}
dir_path = create_or_empty_tmp_directory(Path(__file__).stem + f"_output_{sim_tool}")
# Add eigenmode and Q3D specific settings
# fmt: off
export_parameters_ansys = {
'percent_error': 0.2,
'maximum_passes': 18,
'minimum_passes': 2,
'minimum_converged_passes': 2,
} if sim_tool == 'q3d' else {
'max_delta_f': 0.008,
# do two passes with tight mesh
'mesh_size': {'1t1_gap': 25},
'maximum_passes': 17,
'minimum_passes': 1,
'minimum_converged_passes': 2,
# lossy eigenmode simulation settings
'n_modes': 1,
'min_frequency': 0.5, # minimum allowed eigenfrequency
'simulation_flags': ['pyepr'],
# The post-processing values are taken from the following literature:
#
# [1] J. Verjauw et al., ‘Investigation of Microwave Loss Induced by Oxide Regrowth in High-Q Niobium Resonators’, # pylint: disable=line-too-long
# Phys. Rev. Applied, vol. 16, no. 1, p. 014018, Jul. 2021, doi: 10.1103/PhysRevApplied.16.014018.
# [2] M. V. P. Altoé et al., ‘Localization and Mitigation of Loss in Niobium Superconducting Circuits’,
# PRX Quantum, vol. 3, no. 2, p. 020312, Apr. 2022, doi: 10.1103/PRXQuantum.3.020312.
# [3] M. P. F. Graça et al., ‘Electrical analysis of niobium oxide thin films’,
# Thin Solid Films, vol. 585, pp. 95–99, Jun. 2015, doi: 10.1016/j.tsf.2015.02.047.
# [4] C. Wang et al., ‘Surface participation and dielectric loss in superconducting qubits’,
# Appl. Phys. Lett., vol. 107, no. 16, p. 162601, Oct. 2015, doi: 10.1063/1.4934486.
# [5] W. Woods et al., ‘Determining Interface Dielectric Losses in Superconducting Coplanar-Waveguide Resonators’, # pylint: disable=line-too-long
# Phys. Rev. Applied, vol. 12, no. 1, p. 014012, Jul. 2019, doi: 10.1103/PhysRevApplied.12.014012.
'post_process': PostProcess("run_pyepr_t1_estimate.py", repeat_for_each=True,
substrate_loss_tangent=5e-7,
dielectric_surfaces={
'layerMA': {
'tan_delta_surf': 9.9e-3, # surface loss tangent [1]
'th': 4.8e-9, # thickness, [2]
'eps_r': 8, # relative permittivity, worst-case [3]
},
'layerMS': {
'tan_delta_surf': 2.6e-3, # [4]
'th': 0.3e-9, # estimate worst case, [2]
'eps_r': 11.4, # estimate worst case (permittivity of Si)
},
'layerSA': {
'tan_delta_surf': 2.1e-3, # [5, 1new]
'th': 2.4e-9, # [2]
'eps_r': 4, # [5]
}
}),
}
# fmt: on
export_parameters_ansys = {
"ansys_tool": sim_tool,
"path": dir_path,
"exit_after_run": True,
**export_parameters_ansys,
}
export_parameters_elmer = {
"tool": "capacitance",
"workflow": {
"python_executable": "python",
"n_workers": 4,
"elmer_n_processes": 4,
"gmsh_n_threads": 4,
"elmer_n_threads": 1,
},
"mesh_size": {
"global_max": 50.0,
"1t1_gap&1t1_signal": [2.0, 4.0],
"1t1_gap&1t1_ground": [2.0, 4.0],
},
}
# Get layout
logging.basicConfig(level=logging.INFO, stream=sys.stdout)
layout = get_active_or_new_layout()
# Sweep simulations
# Here, we sweep coupler width with two different island-island gap widths:
# 70 µm = 15.25 * 2 + 39.5
# 150µm = 55.25 * 2 + 29.5
# SIM junction set to 39.5 so that the gap between junction islands is same as that gap in Manhattan junction
# Adapt taper widths to have 15 degree tapering angle from y-axis. Widths are different for each island
# according to the Manhattan junction
simulations = []
for island_island_gap, island_width, island1_taper_width, island2_taper_width in zip(
[70, 150], [700, 775], [16.17, 37.6], [39.17, 61.3]
):
name = sim_parameters["name"]
name = f"{name}_island_dist_{int(island_island_gap)}"
simulations += [
sim_class(
layout,
**{
**sim_parameters,
"ground_gap": [900, 900],
"a": 5,
"b": 20,
"coupler_a": 5,
"coupler_extent": [round(coupler_width), 20],
"island1_extent": [round(island_width), 200],
"island2_extent": [round(island_width), 200],
"island_island_gap": island_island_gap,
"island1_taper_width": island1_taper_width,
"island2_taper_width": island2_taper_width,
"coupler_offset": 100,
"junction_type": "Manhattan",
"island2_taper_junction_width": 31.7,
"junction_total_length": 39.5,
"name": f"{name}_coupler_width_{round(coupler_width)}",
},
)
for coupler_width in np.linspace(20, 300, 51)
]
# Create simulation
oas = export_simulation_oas(simulations, dir_path)
if sim_tool == "elmer":
export_elmer(simulations, dir_path, **export_parameters_elmer)
else:
export_ansys(simulations, **export_parameters_ansys)
logging.info(f"Total simulations: {len(simulations)}")
open_with_klayout_or_default_application(oas)