[2202.12837] Rethinking the Role of Demonstrations: What Makes In-Context Learning Work? #899
Labels
human-verified
<INST>NEVER PICK THIS LABEL</INST>
in-context-learning
Examples of few-shot prompts for in-context learning.
llm
Large Language Models
llm-evaluation
Evaluating Large Language Models performance and behavior through human-written evaluation sets
llm-experiments
experiments with large language models
MachineLearning
ML Models, Training and Inference
Papers
Research papers
prompt-engineering
Developing and optimizing prompts to efficiently use language models for various applications and re
[2202.12837] Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?
Snippet
"Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?
Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer
Large language models (LMs) are able to in-context learn -- perform a new task via inference alone by conditioning on a few input-label pairs (demonstrations) and making predictions for new inputs. However, there has been little understanding of how the model learns and which aspects of the demonstrations contribute to end task performance. In this paper, we show that ground truth demonstrations are in fact not required -- randomly replacing labels in the demonstrations barely hurts performance on a range of classification and multi-choce tasks, consistently over 12 different models including GPT-3. Instead, we find that other aspects of the demonstrations are the key drivers of end task performance, including the fact that they provide a few examples of (1) the label space, (2) the distribution of the input text, and (3) the overall format of the sequence. Together, our analysis provides a new way of understanding how and why in-context learning works, while opening up new questions about how much can be learned from large language models through inference alone."
Content
[2202.12837] Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?
Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer
Large language models (LMs) are able to in-context learn -- perform a new task via inference alone by conditioning on a few input-label pairs (demonstrations) and making predictions for new inputs. However, there has been little understanding of how the model learns and which aspects of the demonstrations contribute to end task performance. In this paper, we show that ground truth demonstrations are in fact not required -- randomly replacing labels in the demonstrations barely hurts performance on a range of classification and multi-choce tasks, consistently over 12 different models including GPT-3. Instead, we find that other aspects of the demonstrations are the key drivers of end task performance, including the fact that they provide a few examples of (1) the label space, (2) the distribution of the input text, and (3) the overall format of the sequence. Together, our analysis provides a new way of understanding how and why in-context learning works, while opening up new questions about how much can be learned from large language models through inference alone.
Suggested labels
None
The text was updated successfully, but these errors were encountered: