-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathargs.py
57 lines (47 loc) · 2.86 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import argparse
import torch
def Configs():
parser = argparse.ArgumentParser()
parser.add_argument('--datapath', dest='datapath', type=str,
default='provid the path to the dataset',
help='path to dataset')
parser.add_argument('--dataset', dest='dataset', type=str, default='csiq',
help='Support datasets: clive|koniq|fblive|live|csiq|tid2013')
parser.add_argument('--svpath', dest='svpath', type=str,
default='path to save the results',
help='the path to save the info')
parser.add_argument('--train_patch_num', dest='train_patch_num', type=int, default=50,
help='Number of sample patches from training image')
parser.add_argument('--test_patch_num', dest='test_patch_num', type=int, default=50,
help='Number of sample patches from testing image')
parser.add_argument('--lr', dest='lr', type=float, default=2e-5,
help='Learning rate')
parser.add_argument('--weight_decay', dest='weight_decay', type=float, default=5e-4,
help='Weight decay')
parser.add_argument('--batch_size', dest='batch_size', type=int, default=8,
help='Batch size')
parser.add_argument('--epochs', dest='epochs', type=int, default=3,
help='Epochs for training')
parser.add_argument('--seed', dest='seed', type=int, default=2021,
help='for reproducing the results')
parser.add_argument('--vesion', dest='vesion', type=int, default=1,
help='vesion number for saving')
parser.add_argument('--patch_size', dest='patch_size', type=int, default=224,
help='Crop size for training & testing image patches')
parser.add_argument('--droplr', dest='droplr', type=int, default=5,
help='drop lr by every x iteration')
parser.add_argument('--gpunum', dest='gpunum', type=str, default='0',
help='the id for the gpu that will be used')
parser.add_argument('--network', dest='network', type=str, default='resnet50',
help='the resnet backbone to use')
parser.add_argument('--nheadt', dest='nheadt', type=int, default=16,
help='nheadt in the transformer')
parser.add_argument('--num_encoder_layerst', dest='num_encoder_layerst', type=int, default=2,
help='num encoder layers in the transformer')
parser.add_argument('--dim_feedforwardt', dest='dim_feedforwardt', type=int, default=64,
help='dim feedforward in the transformer')
return parser.parse_args()
if __name__ == '__main__':
config = Configs()
for arg in vars(config):
print(arg, getattr(config, arg))