Skip to content

Latest commit

 

History

History
335 lines (270 loc) · 15.6 KB

README.md

File metadata and controls

335 lines (270 loc) · 15.6 KB

fifteen-solver

fifteen-solver is a Kotlin library for solving 15 puzzle games.

Usage

Download

  1. Add JitPack repository (e.g. in settings.gradle):
    dependencyResolutionManagement {
        repositories {
            maven {
                url 'https://jitpack.io'
                content { includeGroup("me.italankin.fifteen-solver") } // or just add this line, if you have jitpack already
            }
        }
    }
  2. Add the dependency:
    dependencies {
        // solver dependency
        implementation 'me.italankin.fifteen-solver:solver:<version>'
        // optional: game dependency, if you only need game implementation
        implementation 'me.italankin.fifteen-solver:game:<version>'
    }
    See releases for available versions.

Basic example

fun main(): Unit = runBlocking {
    val session = Session(
        // generate 100 games of size 3x3 using random shuffle for scrambling
        generator = randomGames()
            .size(3 x 3)
            .scrambler(ShuffleScrambler())
            .generator()
            .bounded(100),
        // compare two A* solvers using Manhattan Distance and Linear Conflict heuristics
        solvers = listOf(
            Solver(
                heuristics = ManhattanDistance(),
                algorithm = AStar(),
            ),
            Solver(
                heuristics = LinearConflict(),
                algorithm = AStar(),
            ),
        ),
        // report results and compare solvers by average solve time
        reporter = SystemOutReporter(
            compareBy = listOf(SystemOutReporter.DefaultFields.AVG_TIME)
        ).withProgress(), // display live progress
    )
    session.dumpParameters() // dump session parameters to stdout
    session.execute() // start solving
}
Example output
session parameters:
  concurrency: 11
  generator:
    Bounded(count=100) {
       Random(Classic, 3x3, Default, ShuffleScrambler)
    }
  games count: 100
  total games count: 200
  solvers:
    * Solver(heuristics=ManhattanDistance, algorithm=A*(Default))
    * Solver(heuristics=LinearConflict, algorithm=A*(Default))

┌────────────┬────────────────┐
│ Total      │ 200 (0 errors) │
│ Total time │         188 ms │
│ Max memory │          59 MB │
│ Avg memory │          32 MB │
│ GC count   │              2 │
│ GC time    │           3 ms │
└────────────┴────────────────┘
┌─────────────────────────────────────────────────────────────┬───────────────┬─────────────────┬─────────────────────┬────────────────┬────────────────┬────────────────┬─────────────┬─────────────┬─────────────┐
│ Solver                                                      │ CPU time (ms) │ Speed (games/s) │ Avg speed (ms/game) │ Time (min, ms) │ Time (max, ms) │ Time (avg, ms) │ Moves (min) │ Moves (max) │ Moves (avg) │
├─────────────────────────────────────────────────────────────┼───────────────┼─────────────────┼─────────────────────┼────────────────┼────────────────┼────────────────┼─────────────┼─────────────┼─────────────┤
│ Solver(heuristics=LinearConflict, algorithm=A*(Default))    │           778 │         128.560 │               7.778 │          0.033 │        113.835 │          7.778 │          11 │          28 │      22.580 │
│ Solver(heuristics=ManhattanDistance, algorithm=A*(Default)) │           993 │         100.745 │               9.926 │          0.021 │        116.841 │          9.926 │          11 │          28 │      22.580 │
├─────────────────────────────────────────────────────────────┼───────────────┼─────────────────┼─────────────────────┼────────────────┼────────────────┼────────────────┼─────────────┼─────────────┼─────────────┤
│ Total                                                       │          1770 │        1063.830 │               0.940 │          0.021 │        116.841 │          8.852 │          11 │          28 │      22.580 │
└─────────────────────────────────────────────────────────────┴───────────────┴─────────────────┴─────────────────────┴────────────────┴────────────────┴────────────────┴─────────────┴─────────────┴─────────────┘
Compare by AVG_TIME:
┌─────────────────────────────────────────────────────────────┬───────┬────────┬──────────┐
│ Solver                                                      │  Base │   Diff │ Diff (%) │
├─────────────────────────────────────────────────────────────┼───────┼────────┼──────────┤
│ Solver(heuristics=LinearConflict, algorithm=A*(Default))    │ 7.778 │  0.000 │   0.000% │
│ Solver(heuristics=ManhattanDistance, algorithm=A*(Default)) │ 9.926 │ +2.148 │ +27.610% │
└─────────────────────────────────────────────────────────────┴───────┴────────┴──────────┘

Sessions

Session is the main entry point. It encapsulates solving, reporting and threading logic for games. Each session can be execute()d only once.

Parameters

  • generator - generator for games
  • solvers - list of solvers
  • reporter - reports progress and results of solves
  • concurrency - limit number of parallel solves (defaults to available processors count)

For example:

val session = Session(
    generator = randomGames().generator().bounded(50),
    solvers = listOf(Solver(ManhattanDistance(), AStar())),
    reporter = SystemOutReporter().withProgress(),
    concurrency = Session.Concurrency.Fixed(numThreads = 4)
)

Algorithms

me.italankin.fifteen.solver.algorithm

15 puzzle can be solved using different algorithms, but currently implemented are:

  • A* - consumes large amount of memory, but solves relatively quick.

    Warning: solving anything above 4x3 or 3x4 can be slow and result in OOMs for most machines.

    If you just need any solution, the process can be sped up with different strategies for picking most promising node:

    • Default (optimal solutions)
    • Bounded relaxation (suboptimal solutions):
      • StaticWeighting
      • DynamicWeighting
  • IDA* - slow, but has low memory usage

You can implement your own algorithm using Algorithm.

Heuristics

me.italankin.fifteen.solver.heuristics

Currently available heuristics are:

  • ManhattanDistance
  • LinearConflict
  • RelaxedAdjacency
  • HammingDistance
  • Inversions
  • EuclideanDistance

Custom heuristics can be created by implementing Heuristics interface.

Solvers

Solvers allow testing and comparing different combinations Heuristics and Algorithms. For example:

val session = Session(
    generator = /* ... */,
    solvers = listOf(
        ManhattanDistance(),
        LinearConflict(),
        HammingDistance()
    ).map { heuristics -> Solver(heuristics, AStar()) },
    reporter = /* ... */
)

Generators

me.italankin.fifteen.solver.generator

To solve a game, it must be created, which can be done with a help of generators:

  • RandomGameGenerator - create random games with specified parameters
    val randomGameGenerator = randomGames()
        .size(4 x 4)
        .scrambler(ShuffleScrambler(random = Random(0)))
        .factory(GameFactory.Classic)
        .missingTile(MissingTile.Default)
        .skipSolved(true)
        .generator()
  • StaticGameGenerator - yields the same games on every request
    val staticGameGenerator = staticGames {
        +ClassicGame(3, 3, listOf(0, 4, 8, 5, 7, 3, 6, 1, 2))
        +listOf(
            ClassicGame(3, 3, listOf(7, 8, 4, 1, 6, 2, 3, 0, 5)),
            ClassicGame(3, 3, listOf(5, 1, 4, 0, 2, 7, 8, 3, 6)),
        )
    }
  • BoundedGameGenerator - GameGenerator with fixed number of produced games
    val boundedGameGenerator = randomGames()
        .generator()
        .bounded(100)
  • FilterGameGenerator - filter games
    val filterGameGenerator = randomGames()
        .bounded(100)
        .filterGames { it.state[0] != 0 }
  • ConcatGameGenerator - concat multiple BoundedGameGenerators
    val concatGameGenerator = concatGames {
        +randomGames().size(3 x 3).bounded(100)
        +randomGames().size(4 x 4).bounded(100)
    }
  • ShufflingGameGenerator - shuffle results from BoundedGameGenerator on each request
    val shufflingGameGenerator = randomGames()
        .bounded(100)
        .shuffle(random = Random(0))
  • RepeatingGameGenerator - repeat results from BoundedGameGenerator specified number of times
    val repeatingGameGenerator = randomGames()
        .bounded(100)
        .repeat(5)
  • FrozenGameGenerator - freeze state of BoundedGameGenerator to produce same results on each request
    val frozenGameGenerator = randomGames()
        .bounded(100)
        .freeze()

Scramblers

me.italankin.fifteen.game.scrambler

Game.Scrambler is an interface for creating game scrambles. Currently available Scramblers are:

  • ShuffleScrambler - random shuffle
  • ShuffleHarderScrambler - random shuffle, but requires more moves on average than ShuffleScrambler
  • SolvedScrambler - solved game
  • RandomClickScrambler - randomly clicks on a tile in the same row or column as empty space
  • RandomMovesScrambler - scramble puzzle by doing random moves
  • StrideScrambler - randomly select a cell and move 0 to that cell
Example comparison of average moves for 3x3
┌────────────────────────────────────────────────────────┬────────┬─────────┬──────────┐
│ Solver                                                 │   Base │    Diff │ Diff (%) │
├────────────────────────────────────────────────────────┼────────┼─────────┼──────────┤
│ ShuffleHarderScrambler                                 │ 25.346 │   0.000 │    0.000 │
│ ShuffleScrambler                                       │ 21.987 │  -3.359 │  -13.254 │
│ StrideScrambler(iterations=50, allowEmptyMoves=false)  │ 21.466 │  -3.880 │  -15.307 │
│ RandomClickScrambler(rounds=50)                        │ 15.610 │  -9.736 │  -38.412 │
│ RandomMovesScrambler(moves=50, allowPrevMoveUndo=true) │ 12.570 │ -12.776 │  -50.406 │
└────────────────────────────────────────────────────────┴────────┴─────────┴──────────┘

Reporters

me.italankin.fifteen.solver.reporter

Available Reporters:

  • SystemOutReporter - reports summary stats to stdout
  • ProgressReporter - reports current progress to stdout, e.g.:
    queue: 86/11/3/100 (3%), 1.476 games/s, memory: 3679 MB, elapsed: 2s, remaining: 66s
    
  • JsonReporter - dumps results to JSON
  • CsvReporter - dumps results to CSV
  • CompositeReporter - concatenates multiple reporters
    val compositeReporter = SystemOutReporter() + 
        ProgressReporter() + 
        JsonReporter(JsonReporter.Output.ToFile("results.json"))

Statistics

Statistics can be calculated by simply calling stats() extension function on the results:

val session = Session(...)
val results = session.execute()
val stats = results.stats()
// do something with stats

You can also utilize Table class, example usage can be found in SystemOutReporter.

License

See LICENSE.