-
Notifications
You must be signed in to change notification settings - Fork 43
/
publications.html
1371 lines (1260 loc) · 76.8 KB
/
publications.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- DW6 -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>CLEAN - Publications</title>
<link rel="shortcut icon" type="image/jpg" href="images/tab_logo.png"/>
<link rel="stylesheet" href="emx_nav_left.css" type="text/css">
<script type="text/javascript">
<!--
var time = 3000;
var numofitems = 3;
//menu constructor
function menu(allitems,thisitem,startstate){
callname= "gl"+thisitem;
divname="subglobal"+thisitem;
this.numberofmenuitems = numofitems;
this.caller = document.getElementById(callname);
this.thediv = document.getElementById(divname);
this.thediv.style.visibility = startstate;
}
//menu methods
function ehandler(event,theobj){
for (var i=1; i<= theobj.numberofmenuitems; i++){
var shutdiv =eval( "menuitem"+i+".thediv");
shutdiv.style.visibility="hidden";
}
theobj.thediv.style.visibility="visible";
}
function closesubnav(event){
if ((event.clientY <48)||(event.clientY > 107)){
for (var i=1; i<= numofitems; i++){
var shutdiv =eval('menuitem'+i+'.thediv');
shutdiv.style.visibility='hidden';
}
}
}
// -->
</script>
<script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-91911-12']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
</head>
<body onmousemove="closesubnav(event);">
<div class="skipLinks">skip to: <a href="#content">page content</a> | <a href="pageNav">links on this page</a> | <a href="#globalNav">site navigation</a> | <a href="#siteInfo">footer (site information)</a> </div>
<!-- top_head -->
<!-- Start nav bar -->
<div id="masthead">
<h1 id="siteName"><big><b>C</b></big>omputational <big><b>L</b></big>aboratory for <big><b>E</b></big>nergy <big><b>A</b></big>nd <big><b>N</b></big>anoscience</h1>
<div id="globalNav">
<img alt="" src="gblnav_left.gif" height="32" width="4" id="gnl"> <img alt="" src="glbnav_right.gif" height="32" width="4" id="gnr">
<div id="globalLink">
<a href="http://www.uottawa.ca" target="_blank" class="glink" id="gl1" onmouseover="ehandler(event,menuitem1);">University of Ottawa</a>
<a href="https://uwaterloo.ca/" target="_blank" class="glink" id="gl2" onmouseover="ehandler(event,menuitem2);">University of Waterloo</a>
<a href="https://www.google.com/maps/place/Parliament+Hill/@45.4230759,-75.6995602,14.5z/data=!4m5!3m4!1s0x0:0x26bb54f60c29f6e!8m2!3d45.4235937!4d-75.700929" target="_blank" id="gl3" class="glink" onmouseover="ehandler(event,menuitem3);">Ottawa, Ontario, Canada</a>
</div>
<!--end globalLinks-->
</div>
<!-- end globalNav -->
<div id="subglobal1" class="subglobalNav">
<a href="http://www.uottawa.ca" target="_blank">University Homepage</a> |
<a href="https://science.uottawa.ca/physics/" target="_blank">Department of Physics</a>
</div>
<div id="subglobal2" class="subglobalNav">
<a href="https://uwaterloo.ca/" target="_blank">University Homepage</a> |
<a href="https://uwaterloo.ca/electrical-computer-engineering/" target="_blank">Department of Electrical and Computer Engineering</a>
</div>
<div id="subglobal3" class="subglobalNav">
<a href="https://www.google.com/maps/place/Parliament+Hill/@45.4230759,-75.6995602,14.5z/data=!4m5!3m4!1s0x0:0x26bb54f60c29f6e!8m2!3d45.4235937!4d-75.700929" target="_blank">Map it</a> |
<a href="http://www.ottawa.ca/" target="_blank">City of Ottawa</a> |
<a href="http://www.cbc.ca/ottawa/" target="_blank">Regional News</a> |
<a href="https://weather.gc.ca/city/pages/on-118_metric_e.html" target="_blank">Local Weather</a> |
<a href="http://www.gc.ca/" target="_blank">Government of Canada</a>
</div>
</div>
<!-- End nav bar -->
<div id="pagecell1">
<img alt="" src="tl_curve_white.gif" height="6" width="6" id="tl"> <img alt="" src="tr_curve_white.gif" height="6" width="6" id="tr">
<div id="breadCrumb">
</div>
<div id="pageName">
<h2>Publications</h2>
</div>
<!-- Start side bar -->
<div id="pageNav">
<div id="sectionLinks">
<a href="index.html">Home</a>
<a href="research.html">Research</a>
<a href="group/index.html">Group Members</a>
<a href="collaborators.html">Collaborators</a>
<a href="codes.html">Codes and Computing</a>
<a href="datasets/index.html">Datasets</a>
<a href="teaching.html">Teaching</a>
<a href="funding.html">Funding</a>
<a href="publications.html">Publications</a>
<a href="blog.html">Blog Posts</a>
<a href="prospective_students.html">Prospective Students</a>
<a href="classroom_tech.html">Classroom Tech</a>
<a href="policy.html">Policy</a>
</div>
</div>
<!-- End side bar -->
<!-- bottom_head -->
<div id="content">
<div class="story">
<ol>
<div id="J78">
<table>
<td>
<li value=78>"High-entropy alloy electrocatalysts screened using machine learning informed by quantum-inspired similarity analysis: computational prediction and experimental synthesis", [(<a href="https://authors.elsevier.com/c/1j~sD9Cyxd6rkf" target="new window">open access link</a>)] (2024)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.48550/arXiv.2307.02620" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/078.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/078.png">
</td>
</table>
</div>
<div id="J77">
<table>
<td>
<li value=77>"Efficient determination of Born-effective charges, LO-TO splitting, and Raman tensors of solids with a real-space atom-centered deep learning approach", Olivier Malenfant-Thuot 1, Kevin Ryczko 2 3 4, Isaac Tamblyn 2 3, Michel Côté, [(<a href="http://dx.doi.org/10.1088/1361-648X/ad64a2" target="new window">open access link</a>)] (2024)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.48550/arXiv.2307.02620" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/077.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/077.png">
</td>
</table>
</div>
<div id="J76">
<table>
<td>
<!-- TODO: this one needs some attention -->
<li value=76>"Dynamic programming with partial information to overcome navigational uncertainty in a nautical environment", [(<a href="https://arxiv.org/abs/2112.14657" target="new window">open access link</a>)] (2023)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.48550/arXiv.2307.02620" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<!--Note: also links to optimus so linked to 073 corresponding to optimus, can change to 075 if needed.-->
<b><h1><a href="publications/076.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/076.png">
</td>
</table>
</div>
<div id="J75">
<table>
<td>
<li value =75>C. Bellinger, M. Crowley, <u>I. Tamblyn</u>, "Dynamic Observation Policies in Observation Cost-Sensitive Reinforcement Learning", <i>Workshop on Advancing Neural Network Training: Computational Efficiency, Scalability, and Resource Optimization</i> [<a href="https://doi.org/10.48550/arXiv.2307.02620" target="new window">WANT</a> (<a href="https://doi.org/10.48550/arXiv.2307.02620" target="new window">open access link</a>)], (2023)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.48550/arXiv.2307.02620" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<!--Note: also links to optimus so linked to 073 corresponding to optimus, can change to 075 if needed.-->
<b><h1><a href="publications/073.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/075.png">
</td>
</table>
</div>
<div id="J74">
<table>
<td>
<li value=74>C. Beeler, S.G. Subramanian, K. Sprague, N. Chatti, C. Bellinger, M. Shahen, N. Paquin, M. Baula, A. Dawit, Z. Yang, X. Li, M. Crowley, <u>I. Tamblyn</u>, "ChemGymRL: An Interactive Framework for Reinforcement Learning for Digital Chemistry", <i>Digital Discovery</i>, Advance Article [<a href="http://dx.doi.org/10.1039/D3DD00183K" target="new window">DD</a> (<a href="http://dx.doi.org/10.1039/D3DD00183K" target="new window">open access link</a>)], (2024)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1039/D3DD00183K" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/074.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/074.png">
</td>
</table>
</div>
<div id="J73">
<table>
<td>
<li value=73>C. Casert, <u>I. Tamblyn</u>, S. Whitelam, "Learning stochastic dynamics and predicting emergent behavior using transformers", <i>Nature Communications</i>, 15, 1875 [<a href="https://doi.org/10.1038/s41467-024-45629-w" target="new window">NC</a>, (<a href="https://doi.org/10.1038/s41467-024-45629-w" target="new window">open access link</a>)], (2024)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1038/s41467-024-45629-w" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/073.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/optimus.png">
</td>
</table>
</div>
<div id="J72">
<table>
<td>
<li value=72>V Letourneau, C. Bellinger, <u>I. Tamblyn</u>, Maia Fraser, "Time and temporal abstraction in continual learning: tradeoffs, analogies and regret in an active measuring setting", <i>2nd Conference on Lifelong Learning Agents (CoLLAs)</i> [<a href="https://proceedings.mlr.press/v232/letourneau23a/letourneau23a.pdf" target = "new window">CoLLAs</a> (<a href ="https://proceedings.mlr.press/v232/letourneau23a/letourneau23a.pdf" target="new window">open access link</a>)], (2023)</li>
<br>
<b><h1><a href="publications/072.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/072.png">
</td>
</table>
</div>
<div id="J71">
<table>
<td>
<li value=71>Z. Gariepy, Z. Chen, <u>I. Tamblyn</u>, C. Veer Singh, C.G. Tetsassi Feugmo, "Automatic graph representation algorithm for heterogeneous catalysis", <i>APL Machine Learning</i>, 1, 3, 036103 [<a href="https://doi.org/10.1063/5.0140487" target ="new window">APL</a> (<a href="https://doi.org/10.1063/5.0140487" target="new window">open access link</a>)] (2023)</li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1063/5.0140487" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/071.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/071.png">
</td>
</table>
</div>
<div id="J70">
<table>
<td>
<li value=70>H. Choubisa*, P. Todorovic*, J.M. Pina, D.H. Parmar, O. Voznyy, <u>I. Tamblyn</u>, E. Sargent, "Interpretable discovery of new semiconductors with machine learning", <i>npj Computational Materials</i>, 9, 11 [<a href="https://doi.org/10.1038/s41524-023-01066-9" target="new window">npj</a> (<a href="https://doi.org/10.1038/s41524-023-01066-9" target="new window">open access link</a>)] (2023)</li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1038/s41524-023-01066-9" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/070.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/DARWIN.png">
</td>
</table>
</div>
<div id="J69">
<table>
<td>
<li value=69> S. Whitelam & <u>I. Tamblyn</u>,, "Cellular automata can classify data by inducing trajectory phase coexistence", <i>Physical Review E</i>, 108, 014126 [<a href="https://doi.org/10.1103/PhysRevE.108.014126"target="new window">PRE</a> (<a href="https://doi.org/10.48550/arXiv.2203.05551" target="new window">open access link</a>)] (2023)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1103/PhysRevE.108.014126" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/069.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/ca_classify.png">
</td>
</table>
</div>
<div id="J68">
<table>
<td>
<li value=68>S. Whitelam, V. Selin, I. Benlolo, C. Casert, <u>I. Tamblyn</u>, "Training neural networks using Metropolis Monte Carlo and an adaptive variant", <i>Machine Learning: Science and Technology</i>, 3, 4, 045026 [<a href="https://doi.org/10.1088/2632-2153/aca6cd" target="new window">MLST</a> (<a href="https://doi.org/10.1088/2632-2153/aca6cd" target="new window">open access link</a>)] (2022)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1088/2632-2153/aca6cd" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/068.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/068.png">
</td>
</table>
</div>
<div id="J67">
<table>
<td>
<!--Needs open access link, could not find open access to article.-->
<li value=67>Z.-W. Chen, Z. Gariepy, L. Chen; X. Yao, A. Anand, S.-J. Liu, C. Feugmo, <u>I. Tamblyn</u>, C. Veer Singh, "Machine learning-driven high entropy alloy catalyst discovery to circumvent the scaling relation for CO2reduction reaction", <i>ACS Catalysis</i>, 12, 24, 14864–14871 [<a href="https://doi.org/10.1021/acscatal.2c03675" target="new window">ACS</a> (<a>open access link</a>)] (2022)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1021/acscatal.2c03675" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/067.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/067.png">
</td>
</table>
</div>
<div id="J66">
<table>
<td>
<li value=66>K. Ryczko, J.T. Krogel, <u>I. Tamblyn</u>, "Machine Learning Diffusion Monte Carlo Energy Densities", <i>Journal of Chemical Theory and Computation</i>, 18, 12, 7695–7701 [<a href="https://doi.org/10.1021/acs.jctc.2c00483" target="new window">ACS</a> (<a href="https://doi.org/10.48550/arXiv.2205.04547" target="new window">open access link</a>)] (2022)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1021/acs.jctc.2c00483" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/066.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/066.png">
</td>
</table>
</div>
<div id="J65">
<table>
<td>
<li value=65>S.J. Wetzel, R.G. Melko, <u>I. Tamblyn</u>, "Twin Neural Network Regression is a Semi-Supervised Regression Algorithm", <i>Machine Learning: Science and Technology</i>, 3, 4, 045007 [<a href="https://doi.org/10.1088/2632-2153/ac9885" target="new window">MLST</a> (<a href="https://doi.org/10.1088/2632-2153/ac9885" target="new window">open access link</a>)] (2022)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1088/2632-2153/ac9885" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/065.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/TNNR2.png">
</td>
</table>
</div>
<div id="J64">
<table>
<td>
<li value=64>S. Wetzel, K. Ryczko, R. Melko, <u>I. Tamblyn</u>, "Twin Neural Network Regression", <i>Applied AI</i>, 3, 4 [<a href="https://doi.org/10.1002/ail2.78" target="new window">AAI</a> (<a href="https://doi.org/10.1002/ail2.78" target="new window">open access link</a>)] (2022)</li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1002/ail2.78" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/064.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/TNNR.png">
</td>
</table>
</div>
<div id="J63">
<table>
<td>
<li value=63>M. Lytova, M. Spanner, <u>I. Tamblyn</u>, "Deep learning and high harmonic generation", <i>Canadian Journal of Physics</i>, 101, 3 [<a href="https://doi.org/10.1139/cjp-2022-0115" target="new window">CJP</a> (<a href="https://doi.org/10.48550/arXiv.2012.10328" target="new window">open access link</a>)] (2022)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1139/cjp-2022-0115" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/063.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/HHG.png">
</td>
</table>
</div>
<div id="J62">
<table>
<td>
<li value=62>H. Anwar, A. Johnston, S. Mahesh, K. Singh, Z. Wang, D. A. Kuntz, <u>I. Tamblyn</u>, O. Voznyy, G.G. Privé, and E.H. Sargent, "High-Throughput Evaluation of Emission and Structure in Reduced-Dimensional Perovskites", <i>ACS Central Science</i>, 8, 5, 571–580 [<a href="https://doi.org/10.1021/acscentsci.2c00041" target="new window">ACS</a> (<a href="https://doi.org/10.1021/acscentsci.2c00041" target="new window">open access link</a>)] (2022)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1021/acscentsci.2c00041" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/062.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/062.png">
</td>
</table>
</div>
<div id="J61">
<table>
<td>
<!--Note: no conference DOI link?-->
<li value=61>M. S. Ghaemi, K. Grantham, <u>I. Tamblyn</u>, Y. Li, H.K. Ooi†, "Generative Enriched Sequential Learning (ESL) Approach for Molecular Design via Augmented Domain Knowledge", <i>Canadian AI</i> [<a href="https://doi.org/10.48550/arXiv.2204.02474" target="new window">CAI</a> (<a href="https://doi.org/10.48550/arXiv.2204.02474" target="new window">open access link</a>)] (2022)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.48550/arXiv.2204.02474" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/061.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/061.png">
</td>
</table>
</div>
<div id="J60">
<table>
<td>
<!--Same issue as above with not having conference DOI-->
<li value=60>C. Bellinger, A. Drozdyuk, M. Crowley, <u>I. Tamblyn</u>, "Scientific Discovery and the Cost of Measurement -- Balancing Information and Cost in Reinforcement Learning", <i>Canadian AI</i> [<a href="https://doi.org/10.48550/arXiv.2112.07535" target="new window">CAI</a> (<a href="https://doi.org/10.48550/arXiv.2112.07535" target="new window">open access link</a>)] (2022)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.48550/arXiv.2112.07535" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/060.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/060.png">
</td>
</table>
</div>
<div id="J59">
<table>
<td>
<li value=59>Kulik, Heather and Hammerschmidt, Thomas and Schmidt, Jonathan and Botti, Silvana and Marques, Miguel A. L. and Boley, Mario and Scheffler, Matthias and Todorović, Milica and Rinke, Patrick and Oses, Corey and Smolyanyuk, Andriy and Curtarolo, Stefano and Tkatchenko, Alexandre and Bartok, Albert and Manzhos, Sergei and Ihara, Manabu and Carrington, Tucker and Behler, Jörg and Isayev, Olexandr and Veit, Max and Grisafi, Andrea and Nigam, Jigyasa and Ceriotti, Michele and Schütt, Kristoff T and Westermayr, Julia and Gastegger, Michael and Maurer, Reinhard and Kalita, Bhupalee and Burke, Kieron and Nagai, Ryo and Akashi, Ryosuke and Sugino, Osamu and Hermann, Jan and Noé, Frank and Pilati, Sebastiano and Draxl, Claudia and Kuban, Martin and Rigamonti, Santiago and Scheidgen, Markus and Esters, Marco and Hicks, David and Toher, Cormac and Balachandran, Prasanna and <u>Tamblyn, Isaac</u> and Whitelam, Stephen and Bellinger, Colin and Ghiringhelli, Luca M. "Roadmap on Machine Learning in Electronic Structure", <i>Electronic Structure</i>, 4, 2 [<a href="https://doi.org/10.1088/2516-1075/ac572f" target="new window">ES</a> (<a href="https://doi.org/10.1088/2516-1075/ac572f" target="new window">open access link</a>)] (2022)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1088/2516-1075/ac572f" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/059.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/059.png">
</td>
</table>
</div>
<div id="J58">
<table>
<td>
<li value=58>K. Ryczko, S.J. Wetzel, R.G. Melko, <u>I. Tamblyn</u>, "Orbital-Free Density Functional Theory with Small Datasets and Deep Learning", <i>Journal of Chemical Theory and Computation</i>, 18, 2, 1122–1128 [<a href="https://doi.org/10.1021/acs.jctc.1c00812" target="new window">ACS</a> (<a href="https://doi.org/10.48550/arXiv.2104.05408" target="new window">open access link</a>)] (2022)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1021/acs.jctc.1c00812" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/058.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/OFDFT.png">
</td>
</table>
</div>
<div id="J57">
<table>
<td>
<li value=57>P. Saidi, H. Pirgazi, M. Sanjari, S. Tamimi, M. Mohammadi, L.K. Beland, M.R. Daymond, <u>I. Tamblyn</u>, "Deep Learning and Crystal Plasticity: A Preconditioning Approach for Accurate Orientation Evolution Prediction", <i>Computer Methods in Applied Mechanics and Engineering</i>, 389, 114392 [<a href="https://doi.org/10.1016/j.cma.2021.114392">CMAME</a>(<a href="https://doi.org/10.48550/arXiv.2106.12730" target="new window">open access link</a>)] (2022)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1016/j.cma.2021.114392" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/057.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/plasticity.png">
</td>
</table>
</div>
<div id="J56">
<table>
<td>
<li value=56>C. Beeler, U. Yahorau, R. Coles, K. Mills, S. Whitelam, and <u>I. Tamblyn</u>, "Optimizing thermodynamic trajectories using evolutionary and gradient-based reinforcement learning", <i>Physical Review E</i>, 104, 064128 [<a href="https://doi.org/10.1103/PhysRevE.104.064128" target="new window">PRE</a> (<a href="https://doi.org/10.48550/arXiv.1903.08543" target="new window">open access link</a>)] (2021)</li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1103/PhysRevE.104.064128" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/056.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/CARNOT.png">
</td>
</table>
</div>
<div id="J55">
<table>
<td>
<li value=55>M. Aldeghi, F. Hase, R.J. Hickman, <u>I. Tamblyn</u>, A. Aspuru-Guzik, "Golem: An algorithm for robust experiment and process optimization", <i>Chemical Science</i>, 12, 14792-14807 [<a href="https://doi.org/10.1039/D1SC01545A" target="new window">CS</a> (<a href="https://doi.org/10.1039/D1SC01545A" target="new window">open access link</a>)] (2021)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1039/D1SC01545A" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/055.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/GOLEM.png">
</td>
</table>
</div>
<div id="J54">
<table>
<td>
<li value=54>P. Abdolghader, G. Resch, A. Ridsdale, T. Grammatikopoulos, F. Légaré, A. Stolow, A.F. Pegoraro, <u>I. Tamblyn</u>, "Unsupervised Hyperspectral Stimulated Raman Microscopy Image Enhancement: Denoising and Segmentation via One-Shot Deep Learning", <i>Optics Express</i>, 29, 21, 34205-34219 [<a href="https://doi.org/10.1364/OE.439662">OE</a> (<a href="https://doi.org/10.1364/OE.439662" target="new window">open access link</a>)] (2021)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1364/OE.439662" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/054.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/SRS.png">
</td>
</table>
</div>
<div id="J53">
<table>
<td>
<li value=53>S. Whitelam, V. Selin, S.-W. Park, <u>I. Tamblyn</u>, "Correspondence between neuroevolution and gradient descent", <i>Nature Communications</i>, 12, 6317 [<a href="https://doi.org/10.1038/s41467-021-26568-2" target ="new window">NC</a> (<a href="https://doi.org/10.1038/s41467-021-26568-2" target="new window">open access link</a>)] (2021)</li>
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1038/s41467-021-26568-2" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/053.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/EQ.png">
</td>
</table>
</div>
<div id="J52">
<table>
<td>
<li value=52>C. Casert, K. Mills, T Vieijra, J Ryckebusch, and <u>I. Tamblyn</u>, "Optical lattice experiments at unobserved conditions and scales through generative adversarial deep learning", <i>Physical Review Research</i>, 3, 033267 [<a href="https://doi.org/10.1103/PhysRevResearch.3.033267" target="new window">PRR</a> (<a href="https://doi.org/10.1103/PhysRevResearch.3.033267" target="new window">open access link</a>)] (2021)</li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1103/PhysRevResearch.3.033267" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/052.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/RUGAN1.png">
</td>
</table>
</div>
<div id="J51">
<table>
<td>
<li value=51>C. Casert, T. Vieijra, S. Whitelam, <u>I. Tamblyn</u>, "Dynamical large deviations of two-dimensional kinetically constrained models using a neural-network state ansatz", <i>Physical Review Letters</i>, 127, 120602 [<a href="https://doi.org/10.1103/PhysRevLett.127.120602" target="new window">PRL</a>, <a href="https://ml4physicalsciences.github.io/2020/files/NeurIPS_ML4PS_2020_60.pdf" target="new window">NeurIPS</a> (<a href="https://doi.org/10.1103/PhysRevLett.127.120602" target="new window">open access link</a>)] (2021)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1103/PhysRevLett.127.120602" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/051.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/NRNN.png">
</td>
</table>
</div>
<div id="J50">
<table>
<td>
<li value=50>S. Whitelam, <u>I. Tamblyn</u>, "Neuroevolutionary learning of particles and protocols for self-assembly", <i>Physical Review Letters</i>>, 127, 018003 [<a href="https://doi.org/10.1103/PhysRevLett.127.018003" target="new window">PRL</a> (<a href="https://doi.org/10.48550/arXiv.2012.11832" target="new window">open access link</a>)] (2021)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1103/PhysRevLett.127.018003" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/050.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/L2G2.png">
</td>
</table>
</div>
<div id="J49">
<table>
<td>
<li value=49>C.G. Tetsassi Feugmo, K. Ryczko, A. Anand, C. Veer Singh, and <u>I. Tamblyn</u>, "Neural evolution structure generation: High Entropy Alloys", <i>Journal of Chemical Physics</i>, 155, 044102 [<a href="https://doi.org/10.1063/5.0049000" target="new window">JCP</a> (<a href="https://doi.org/10.48550/arXiv.2103.01462" target="new window">open access link</a>)] (2021) <b>Cover Article</b>
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1063/5.0049000" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/049.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/HEA_NES.png">
</td>
</table>
</div>
<div id="J48">
<table>
<td>
<li value=48>C. Bellinger, R. Coles, M. Crowley, <u>I. Tamblyn</u>, "Active Measure Reinforcement Learning for Observation Cost Minimization", <i>Canadian Conference on AI</i>, 37, 2021L10 [<a href="https://doi.org/10.21428/594757db.72846d04" target="new window">CCAI</a> (<a href="https://doi.org/10.21428/594757db.72846d04" target="new window">open access link</a>)] (2021)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.21428/594757db.72846d04" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/048.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/ARML.png">
</td>
</table>
</div>
<div id="J47">
<table>
<td>
<li value=47>P. Friederich, M. Krenn, <u>I. Tamblyn</u>, A. Aspuru-Guzik, "Scientific intuition inspired by machine learning generated hypotheses", <i>Machine Learning: Science and Technology</i>, 2, 2, 025027 [<a href="https://doi.org/10.1088/2632-2153/abda08" target="new window">MLST</a> (<a href="https://doi.org/10.1088/2632-2153/abda08" target="new window">open access link</a>)] (2021)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1088/2632-2153/abda08" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/047.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/047.png">
</td>
</table>
</div>
<div id="J46">
<table>
<td>
<li value=46>K. Sprague, J. Carrasquilla, S. Whitelam, and <u>I. Tamblyn</u>, "Watch and learn -- a generalized approach for transferrable learning in deep neural networks via physical principles", <i>Machine Learning: Science and Technology</i>, 2, 2, 02LT02 [<a href="http://dx.doi.org/10.1088/2632-2153/abc81b" target="new window">MLST</a> (<a href="http://dx.doi.org/10.1088/2632-2153/abc81b" target="new window">open access link</a>)] (2021)</li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1088/2632-2153/abc81b" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/046.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/046.png">
</td>
</table>
</div>
<div id="J45">
<table>
<td>
<li value=45>K. Ryczko, P. Darancet, <u>I. Tamblyn</u>, "Inverse Design of a Graphene-Based Quantum Transducer via Neuroevolution", <i>Journal of Physical Chemistry C</i>, 124, 48, 26117-26123 [<a href="https://doi.org/10.1021/acs.jpcc.0c06903" target="new window">JPCC</a> (<a href="https://doi.org/10.48550/arXiv.2007.07070" target="new window">open access link</a>)] (2020)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1021/acs.jpcc.0c06903" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/045.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/045.png">
</td>
</table>
</div>
<div id="J44">
<table>
<td>
<li value=44>K. Mills, C. Casert, <u>I. Tamblyn</u>, "Adversarial generation of mesoscale surface from small scale chemical motifs", <i>Journal of Physical Chemistry C</i>>, 124, 42, 23158-23163, [<a href="https://doi.org/10.1021/acs.jpcc.0c06673" target="new window">JPCC</a> (<a href="https://ml4physicalsciences.github.io/2019/files/NeurIPS_ML4PS_2019_120.pdf">open access NeurIPS 2019 workshop</a>)] (2020)</li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1021/acs.jpcc.0c06673" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/044.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/044.png">
</td>
</table>
</div>
<div id="J43">
<table>
<td>
<li value=43>K. Mills, P. Ronagh, and <u>I. Tamblyn</u>, "Controlled Online Optimization Learning (COOL): Finding the ground state of spin Hamiltonians with reinforcement learning", <i>Nature Machine Intelligence</i>, 2, 509-517 [<a href="https://doi.org/10.1038/s42256-020-0226-x" target="new window">NMI</a> (<a href="https://doi.org/10.48550/arXiv.2003.00011" target="new window">open access link</a>)] (2020), <b>Cover Article</b></li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1038/s42256-020-0226-x" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/043.html">Manuscript Summary</a></h1></b>
<br><b><h1>== News coverage ==</h1></b>
<ul>
<li><a href="https://rdcu.be/b7UN0" target="_blank">Nature News & Views: Solving optimization tasks in condensed matter</a></li>
</u>
</td>
<td>
<img height=100px src="publications/images/043.png">
</td>
</table>
</div>
<div id="J42">
<table>
<td>
<!--No open access link-->
<li value=42>N. A. Rice, W. J. Bodnaryk, I. Tamblyn, Z. J. Jakubek, J. Lefebvre, G. Lopinski, A. Adronov, and C. M. Homenick, "Noncovalent Functionalization of Boron Nitride Nanotubes Using Poly(2,7-carbazole)s", <i>Journal of Polymer Science</i>, 58, 13, 1889-1902 [<a href=" http://dx.doi.org/10.1002/pol.20200164" target="new window">JPS</a> (<a>open access link</a>)] (2020)
<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1002/pol.20200164" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/042.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/042.png">
</td>
</table>
</div>
<div id="J41">
<table>
<td>
<li value=41>S. Whitelam, D. Jacobson, and <u>I. Tamblyn</u>, "Evolutionary reinforcement learning of dynamical large deviations, <i>Journal of Chemical Physics</i>, 153, 4, 044113 [<a href="http://dx.doi.org/10.1063/5.0015301" target="new window">JCP</a> (<a href="https://doi.org/10.48550/arXiv.1909.00835" target="new window">open access link)</a>] (2020)<br>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1063/5.0015301" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/041.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/041.png">
</td>
</table>
</div>
<div id="J40">
<table>
<td>
<li value=40>Hitarth Choubisa, M. Askerka, K. Ryczko, O. Voznyy, K. Mills, <u>I. Tamblyn</u>, and E.H. Sargent, "Crystal Site Feature Embedding Enables Exploration of Large Chemical Spaces", <i>Matter</i>, 3, 2, 433-448 [<a href="https://doi.org/10.1016/j.matt.2020.04.016" target="new window">Matter</a> (<a href="https://doi.org/10.1016/j.matt.2020.04.016" target="new window">open access link</a>)], (2020)</li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1016/j.matt.2020.04.016" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/040.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/040.png">
</td>
</table>
</div>
<div id="J39">
<table>
<td>
<li value=39>S. Whitelam, <u>I. Tamblyn</u>, "Learning to grow: control of materials self-assembly using evolutionary reinforcement learning", <i>Physical Review E</i>, 101, 052604 [<a href="https://dx.doi.org/10.1103/PhysRevE.101.052604" target="new window">PRE</a> (<a href="https://doi.org/10.48550/arXiv.1912.08333" target="new window">open access link</a>)] (2020)</li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1103/PhysRevE.101.052604" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/039.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/039.png">
</td>
</table>
</div>
<div id="J38">
<table>
<td>
<!--Note no conference DOI link-->
<li value=38>C. Bellinger, R. Coles, M. Crowley <u>I. Tamblyn</u>, "Reinforcement Learning in a Physics-Inspired Semi-Markov Environment", <i>CanadianAI</i> [<a href="https://www.caiac.ca/en/conferences/canadianai-2020/session/rl" target ="new window">CAI</a> (<a href="https://arxiv.org/abs/2004.07333" target="new window">open access link</a>)] (2020)</li>
<br>
<b><h1><a href="publications/038.html">Manuscript Summary</a></h1></b>
<br>
</td>
<td>
<img height=100px src="publications/images/038.png">
</td>
</table>
</div>
<div id="J37">
<table>
<td>
<li value=37>K. Ryczko, D. Strubbe, and <u>I. Tamblyn</u>, "Deep learning and density functional theory", <i>Physical Review A</i> 100, 022512 [<a href="https://doi.org/10.1103/PhysRevA.100.022512" target = "new window">PRA</a> (<a href="https://doi.org/10.48550/arXiv.1811.08928" target="new window">open access link</a>)] (2019)</li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1103/PhysRevA.100.022512" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/037.html">Manuscript Summary</a></h1></b>
<br>
</td>
<td>
<img height=100px src="publications/images/037.png">
</td>
</table>
</div>
<div id="J36">
<table>
<td>
<li value=36>K. Mills, I. Luchak, K. Ryczko, A. Domurad, C. Beeler, and <u>I. Tamblyn</u>, "Extensive deep neural networks for transferring small scale learning to large scale systems", <i>Chemical Science</i>, 10, 15, 4119-4354 [<a href="https://doi.org/10.1039/C8SC04578J" target="new window">CS</a> (<a href="https://doi.org/10.1039/C8SC04578J" target="new window">open access link</a>)] (2019), <b>Cover Article</b></li>
<br>
Code examples <a href="codes.html">here</a>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1039/c8sc04578j" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/036.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/036.png">
</td>
</table>
</div>
<div id="J35">
<table>
<td>
<!--No open access link-->
<li value=35>M. E. C. Pascuzzi, E. Selinger A. Sacco, M. Castellino, P. Rivolo, S. Henrandez, G. Lopinski, <u>I. Tamblyn</u>, R. Nasi, S. Esposito, M. Manzoli, B. Bonelli, and M. Armandia, "Beneficial effect of iron addition on the catalytic activity of electrodeposited MnOx films in the water oxidation reaction", <i>Electrochimica Acta</i> 284, 294-302 [<a href="https://doi.org/10.1016/j.electacta.2018.07.148" target="new window">EA</a> (<a>open access link</a>)] (2018)</li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1016/j.electacta.2018.07.148" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/035.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/035.png">
</td>
</table>
</div>
<div id="J34">
<table>
<td>
<li value=34>K. Ryczko, K. Mills, I. Luchak, C. Homenick, and <u>I. Tamblyn</u>, "Convolutional neural networks for atomistic systems", <i>Computational Materials Science</i>, 149, 134-142 [<a href="https://doi.org/10.1016/j.commatsci.2018.03.005" target="new window">CMS</a> (<a href="https://doi.org/10.48550/arXiv.1706.09496" target="new window">open access link</a>)] (2018)</li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1016/j.commatsci.2018.03.005" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/034.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/034.png">
</td>
</table>
</div>
<div id="J33">
<table>
<td>
<li value=33>K. Mills and <u>I. Tamblyn</u>, "Deep neural networks for learning operators through observation: the case of the 2d spin models", <i>Physical Review E</i>, 97, 032119 [<a href="https://doi.org/10.1103/PhysRevE.97.032119">PRE</a> (<a href="https://doi.org/10.48550/arXiv.1706.09779" target="new window">open access link</a>)] (2018)</li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1103/PhysRevE.97.032119" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/033.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/033.png">
</td>
</table>
</div>
<div id="J32">
<table>
<td>
<li value=32>K. Mills, M. Spanner, and <u>I. Tamblyn</u>, "Deep learning and the Schrodinger equation", <i>Physical Review A</i>, 96, 042113 [<a href="https://doi.org/10.1103/PhysRevA.96.042113" target="new window">PRA</a> (<a href="https://doi.org/10.48550/arXiv.1702.01361" target="new window">open access link</a>)] (2017), <b>Editor's Suggestion</b></li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1103/PhysRevA.96.042113" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/032.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/032.png">
</td>
</table>
</div>
<div id="J31">
<table>
<td>
<li value=31><u>I. Tamblyn</u>, "The electronic structure of nanoscale interfaces", <i>Molecular Simulation</i>, 43, 10-11 [<a href="http://dx.doi.org/10.1080/08927022.2017.1313417" target="new window">MS</a> (<a>open access link</a>)] (2017)</li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1080/08927022.2017.1313417" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/031.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/031.png">
</td>
</table>
</div>
<div id="J30">
<table>
<td>
<li value=30>Y. Chen, <u>I. Tamblyn</u>, and S.Y. Quek, "Energy Level Alignment at Hybridized Organic-Metal Interfaces: The Role of Many-Electron Effects", <i>Journal of Physical Chemistry C</i>, 121, 24, 13125–13134 [<a href="http://dx.doi.org/10.1021/acs.jpcc.7b00715" target="new window">JPC</a> (<a href="https://doi.org/10.48550/arXiv.1706.10024" target="new window">open access link</a>)] (2017)</li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1021/acs.jpcc.7b00715" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/030.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/030.png">
</td>
</table>
</div>
<div id="J29">
<table>
<td>
<li value=29>N. Portman & <u>I. Tamblyn</u> "Sampling algorithms for validation of supervised learning models for Ising-like systems", <i>Journal of Computational Physics</i>, 350, 871-890 [<a href="https://doi.org/10.1016/j.jcp.2017.06.045" target="new window">JCP</a> (<a href="https://doi.org/10.48550/arXiv.1611.05891" target="new window">open access link</a>)] (2017)</li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1016/j.jcp.2017.06.045" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/029.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="publications/images/ising_PCA.png">
</td>
</table>
</div>
<div id="J28">
<table>
<td>
<li value=28>K. Ryczko & <u>I. Tamblyn</u> "Structural characterizations of water-metal interfaces", <i>Physical Review B</i>, 96, 064104 [<a href="https://doi.org/10.1103/PhysRevB.96.064104" target="new window">PRB</a> (<a href="https://doi.org/10.48550/arXiv.1611.02307" target="new window">open access link</a>)] (2017)</li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1103/PhysRevB.96.064104" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/028.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="group/images/itamblyn/structural_characterization.png">
</td>
</table>
</div>
<div id="J27">
<table>
<td>
<li value=27>K. Ryczko, A. Domurad, N. Buhagiar, and <u>I. Tamblyn</u>, "hashkat: Large-scale simulations of online social networks", <i>Social Network Analysis and Mining</i>, 7, 4 [<a href="http://dx.doi.org/10.1007/s13278-017-0424-7" target="new window">SNA</a> (<a href="https://doi.org/10.48550/arXiv.1610.07458" target="new window">open access link</a>)] (2017)</li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1007/s13278-017-0424-7" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/026.html">Manuscript Summary</a></h1></b>
</td>
</td>
<td>
<img height=100px src="group/images/itamblyn/agent_types.png">
</td>
</table>
</div>
<div id="J26">
<table>
<td>
<!--note no DOI links-->
<li value=26>G. Gupta, M. Radhakrishna, <u>I. Tamblyn</u>, D. QH Tran, M. Besemann, A. Thonnagith, M.F. Elgueta, M.E. Robitaille, R.J. Finlayson, "A randomized comparison between neurostimulation- and ultrasound-guided lateral femoral cutaneous nerve block", <i>US Army Medical Department Journal</i>, 2-17, 33-38 [<a href="https://pubmed.ncbi.nlm.nih.gov/28853117/" target="new window">NLM</a> (<a href="https://nrc-publications.canada.ca/eng/view/ft/?id=a881526e-18f1-4a3d-a2fd-057fb2f364e1" target="new window">open access link</a>)] (2016)</li>
<br>
<b><h1><a href="publications/026.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=100px src="group/images/itamblyn/leg_freeze.png">
</td>
</table>
</div>
<div id="J25">
<table>
<td>
<li value=25>S Whitelam, <u>I. Tamblyn</u>, J.P. Garrahan, and P.H. Beton, "Emergent rhombus tilings from molecular interactions with M-fold rotational symmetry", <i>Physical Review Letters</i>, 114, 115702 [<a href="https://doi.org/10.1103/PhysRevLett.114.115702" target="new window">PRL</a> (<a href="https://doi.org/10.48550/arXiv.1411.3644" target="new window">open access link</a>)] (2015) <a href="http://journals.aps.org/prl/covers/114/11"><b>Cover article</b></a></li>
<br><span class="__dimensions_badge_embed__" data-doi="10.1103/PhysRevLett.114.115702" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/025.html">Manuscript Summary</a></h1></b>
</td>
<td>
<img height=150px src="group/images/itamblyn/emergent_rhombus.png">
</td>
</table>
</div>
<div id="J24">
<table>
<td>
<!--no open access DOI-->
<li value=24>S. Choing, A. J. Francis, G. Clendenning*, M. Schuurman, Roger D. Sommer, <u>I. Tamblyn</u>, W.W. Weare, and T. Cuk, "Long-Lived LMCT in a d0 Vanadium(V) Complex by Internal Conversion to a State of 3dxy Character", <i>Journal of Physical Chemistry C</i>, 2015, 119, 17029-17038 [<a href="https://doi.org/10.1021/acs.jpcc.5b00513" target="new window">JPC</a> (<a href="https://nrc-publications.canada.ca/eng/view/ft/?id=5da554e5-7ac2-43d0-bfc9-07b668c650eb" target="new window">open access link</a>)](2015) <b>Cover article</b></li>
<br>
<span class="__dimensions_badge_embed__" data-doi="10.1021/acs.jpcc.5b00513" data-style="small_rectangle"></span><script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script>
<br>
<b><h1><a href="publications/024.html">Manuscript Summary</a></h1></b>
</td>