-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
196 lines (160 loc) · 6.03 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import cv2
import numpy as np
import os
import shutil
import subprocess
import sys
import tensorflow as tf
sys.path.append('musicnn')
from musicnn.extractor import extractor
from musicnn import configuration
MUSICNN_MODEL = 'MSD_musicnn'
# MUSICNN_MODEL = 'MSD_vgg'
# This shall be synchronized with the beats.
MUSICNN_INPUT_LENGTH = 2.416
# Possible values: mean_pool, max_pool, penultimate, taggram
FEATURE_NAME = 'max_pool'
FEATURE_THRESHOLD = 1.5
DEEP_DREAM_MODEL = 'inception5h/tensorflow_inception_graph.pb'
LAYER_NAMES = ['mixed3a', 'mixed4a', 'mixed4e', 'mixed5b']
LAYER_WEIGHTS = [2, 0.7, 0.5, 0.4]
MIX_RNG_SEED = 1
# (size, iterations, learning_rate)
OCTAVE_PARAMS = [
(8, 3, 10),
(11, 3, 9),
(16, 2, 8),
(23, 2, 7),
(32, 3, 5),
(45, 3, 4),
(64, 3, 3),
(91, 4, 2),
(128, 6, 2),
(181, 8, 2),
(256, 8, 2),
(362, 12, 2),
(512, 16, 2),
]
OUTPUT_IMAGE_SIZE = 1024
OUTPUT_DIR = 'output'
TEMP_DIR = '.temp'
GAMMA = 0.9
configuration.SR = 64000
configuration.N_MELS = 64
# This is a constant, not a configurable parameter.
IMAGENET_MEAN = 117.0
mix_rng = np.random.RandomState(MIX_RNG_SEED)
fps = None
def make_frames(audio_file):
taggram, tags, feature_map = extractor(audio_file, model=MUSICNN_MODEL, input_length=MUSICNN_INPUT_LENGTH)
print(f'Musicnn features: {feature_map.keys()}')
feature_map['taggram'] = taggram
song_features = feature_map[FEATURE_NAME]
graph = tf.Graph()
sess = tf.InteractiveSession(graph=graph)
with tf.gfile.FastGFile(DEEP_DREAM_MODEL, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
# define input
X = tf.placeholder(tf.float32, name="input")
X2 = tf.expand_dims(X - IMAGENET_MEAN, 0)
tf.import_graph_def(graph_def, {"input": X2})
losses = []
targets = []
layers = []
num_features = 0
for layer_name in LAYER_NAMES:
layer = graph.get_tensor_by_name("import/%s:0" % layer_name)
layers.append(layer)
num_features += int(layer.shape[-1])
print(f'Layer {layer_name}, shape {layer.shape}')
target = tf.placeholder(tf.float32, name="target")
targets.append(target)
# loss = tf.reduce_mean(tf.sqrt(tf.square(layer - target)))
loss = tf.reduce_mean(layer * target)
losses.append(loss)
loss = losses[0] * LAYER_WEIGHTS[0]
for i in range(1, len(losses)):
loss = loss + losses[i] * LAYER_WEIGHTS[i]
gradient = tf.gradients(loss, X)[0]
def make_frame(image):
frame = cv2.resize(image, (OUTPUT_IMAGE_SIZE, OUTPUT_IMAGE_SIZE), interpolation=cv2.INTER_CUBIC) / 255
frame = np.clip(frame, 0, 1)
frame = np.power(frame, GAMMA) * 255
return frame
image = np.full((OCTAVE_PARAMS[0][0], OCTAVE_PARAMS[0][0], 3), IMAGENET_MEAN, dtype=np.float32)
frame_num = 0
for fi in range(len(song_features)):
target_values = []
features = song_features[fi]
scale = int(num_features / len(features) * 4)
scale = scale if scale % 2 else scale + 1
features = cv2.resize(np.tile(features, (scale, 1)), (num_features, scale),
interpolation=cv2.INTER_LINEAR)[scale // 2]
features = (features > FEATURE_THRESHOLD).astype(np.float32)
print(f'Non-zero features {features.sum() / len(features) * 100:0.1f}%')
mix_rng.shuffle(features)
start = 0
for l in range(len(layers)):
layer = layers[l]
target_size = int(layer.shape[3])
t = features[start:start+target_size]
start += target_size
target_values.append(t)
for oi in range(len(OCTAVE_PARAMS)):
# l = sess.run(layer, {X: image})
# print(f'size {image.shape} l shape {l.shape} l range {l.min()} {l.max()}')
for batch in range(OCTAVE_PARAMS[oi][1]):
args = {X: image}
for t in range(len(targets)):
args[targets[t]] = target_values[t]
g = sess.run(gradient, args)
lr = OCTAVE_PARAMS[oi][2]
image += lr * g / (np.abs(g).mean() + 1e-7)
frame = make_frame(image)
cv2.imwrite(os.path.join(TEMP_DIR, f'f-{frame_num:05d}.png'), frame)
frame_num += 1
cv2.imshow(f'image', frame / 255)
cv2.waitKey(1)
if oi < len(OCTAVE_PARAMS) - 1:
image = cv2.resize(image, (OCTAVE_PARAMS[oi + 1][0], OCTAVE_PARAMS[oi + 1][0]), interpolation=cv2.INTER_CUBIC)
downscaled = image
for oi in range(len(OCTAVE_PARAMS) - 2, -1, -1):
s = OCTAVE_PARAMS[oi][0]
downscaled = cv2.resize(downscaled, (s, s), interpolation=cv2.INTER_CUBIC)
frame = make_frame(downscaled)
cv2.imwrite(os.path.join(TEMP_DIR, f'f-{frame_num:05d}.png'), frame)
frame_num += 1
cv2.imshow(f'image', frame / 255)
cv2.waitKey(100)
global fps
if fps is None:
fps = int(np.round(frame_num / MUSICNN_INPUT_LENGTH))
image = cv2.resize(image, (OCTAVE_PARAMS[0][0], OCTAVE_PARAMS[0][0]), interpolation=cv2.INTER_CUBIC)
image = (image - image.min()) / (image.max() - image.min()) * 255
def make_movie(audio_file):
for i in range(1000):
filename = os.path.join(OUTPUT_DIR, os.path.splitext(os.path.basename(audio_file))[0] + f'-{i:003d}.mp4')
if not os.path.exists(filename):
break
subprocess.run(
[
'ffmpeg', '-y',
'-pix_fmt', 'yuv420p',
'-framerate', f'{fps}',
'-start_number', '0',
'-i', fr'{TEMP_DIR}\f-%05d.png',
'-i', audio_file,
'-c:v', 'libx264',
'-r', f'{fps}',
filename
]
)
def run(audio_file):
shutil.rmtree(TEMP_DIR, ignore_errors=True)
os.makedirs(TEMP_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
make_frames(audio_file)
make_movie(audio_file)
if __name__ == "__main__":
run(sys.argv[1])