Skip to content

Latest commit

 

History

History
 
 

uri

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Predict on a InferenceService with a saved model from a URI

This allows you to specify a model object via the URI (Uniform Resource Identifier) of the model object exposed via an http or https endpoint.

This storageUri option supports single file models, like sklearn which is specified by a joblib file, or artifacts (e.g. tar or zip) which contain all the necessary dependencies for other model types (e.g. tensorflow or pytorch). Here, we'll show examples from both of the above.

Setup

  1. Your ~/.kube/config should point to a cluster with KFServing installed.
  2. Your cluster's Istio Ingress gateway must be network accessible.
  3. Your cluster's Istio Egress gateway must allow http / https traffic

Sklearn

Train and freeze the model

Here, we'll train a simple iris model. Please note that kfserving requires sklearn==0.20.3.

from sklearn import svm
from sklearn import datasets
import joblib

def train(X, y):
    clf = svm.SVC(gamma='auto')
    clf.fit(X, y)
    return clf

def freeze(clf, path='../frozen'):
    joblib.dump(clf, f'{path}/model.joblib')
    return True

if __name__ == '__main__':
    iris = datasets.load_iris()
    X, y = iris.data, iris.target
    clf = train(X, y)
    freeze(clf)

Now, you'll need to take that frozen model object and put it somewhere on the web to expose it. For instance, pushing the model.joblib file to some repo on GitHub.

Specify and create the InferenceService

apiVersion: serving.kubeflow.org/v1alpha2
kind: InferenceService
metadata:
  name: sklearn-from-uri
spec:
  default:
    predictor:
      sklearn:
        storageUri: https://github.com/tduffy000/kfserving-uri-examples/blob/master/sklearn/frozen/model.joblib?raw=true

Apply the CRD,

kubectl apply -f sklearn_uri.yaml

Expected Output

$ inferenceservice.serving.kubeflow.org/sklearn-from-uri created

Run a prediction

The first is to determine the ingress IP and ports and set INGRESS_HOST and INGRESS_PORT.

Now, if everything went according to plan you should be able to hit the endpoint exposing the model we just uploaded.

MODEL_NAME=sklearn-from-uri
INPUT_PATH=@./input.json
curl -v -H "Host: ${SERVICE_HOSTNAME}" http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/$MODEL_NAME:predict -d $INPUT_PATH

Expected Output

$ *   Trying 10.0.1.16...
* TCP_NODELAY set
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0* Connected to 10.0.1.16 (10.0.1.16) port 30749 (#0)
> POST /v1/models/sklearn-from-uri:predict HTTP/1.1
> Host: sklearn-from-uri.kfserving-uri-storage.example.com
> User-Agent: curl/7.58.0
> Accept: */*
> Content-Length: 86
> Content-Type: application/x-www-form-urlencoded
> 
} [86 bytes data]
* upload completely sent off: 86 out of 86 bytes
< HTTP/1.1 200 OK
< content-length: 23
< content-type: application/json; charset=UTF-8
< date: Thu, 06 Aug 2020 23:13:42 GMT
< server: istio-envoy
< x-envoy-upstream-service-time: 7
< 
{ [23 bytes data]
100   109  100    23  100    86    605   2263 --:--:-- --:--:-- --:--:--  2868
* Connection #0 to host 10.0.1.16 left intact
{
  "predictions": [
    1,
    1
  ]
}

Tensorflow

This will serve as an example of the ability to also pull in a tarball containing all of the required model dependencies, for instance tensorflow requires multiple files in a strict directory structure in order to be servable.

Train and freeze the model

from sklearn import datasets
import numpy as np
import tensorflow as tf

def _ohe(targets):
    y = np.zeros((150, 3))
    for i, label in enumerate(targets):
        y[i, label] = 1.0
    return y

def train(X, y, epochs, batch_size=16):
    model = tf.keras.Sequential([
        tf.keras.layers.InputLayer(input_shape=(4,)),
        tf.keras.layers.Dense(16, activation=tf.nn.relu),
        tf.keras.layers.Dense(16, activation=tf.nn.relu),
        tf.keras.layers.Dense(3, activation='softmax')
    ])
    model.compile(tf.keras.optimizers.RMSprop(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
    model.fit(X, y, epochs=epochs)
    return model

def freeze(model, path='../frozen'):
    model.save(f'{path}/0001')
    return True

if __name__ == '__main__':
    iris = datasets.load_iris()
    X, targets = iris.data, iris.target
    y = _ohe(targets)
    model = train(X, y, epochs=50)
    freeze(model)

The post-training procedure here is a bit different. Instead of directly pushing the frozen output to some URI, we'll need to package them into a tarball. To do so,

cd ../frozen
tar -cvf artifacts.tar 0001/
gzip < artifacts.tar > artifacts.tgz

Where we assume the 0001/ directory has the structure:

|-- 0001/
|-- saved_model.pb
|-- variables/
|--- variables.data-00000-of-00001
|--- variables.index

Note that building the tarball from the directory specifying a version number is required for tensorflow.

Now, you can either push the .tar or .tgz file to some remote uri.

Specify and create the InferenceService

And again, if everything went to plan we should be able to pull down the tarball and expose the endpoint.

apiVersion: serving.kubeflow.org/v1alpha2
kind: InferenceService
metadata:
  name: tensorflow-from-uri-gzip
spec:
  default:
    predictor:
      tensorflow:
        storageUri: https://raw.githubusercontent.com/tduffy000/kfserving-uri-examples/master/tensorflow/frozen/model_artifacts.tar.gz

Apply the CRD,

kubectl apply -f tensorflow_uri.yaml

Expected Output

$ inferenceservice.serving.kubeflow.org/tensorflow-from-uri created

Run a prediction

Again, make sure to first determine the ingress IP and ports and set INGRESS_HOST and INGRESS_PORT.

Now that our endpoint is up and running, we can get some predictions.

MODEL_NAME=tensorflow-from-uri
INPUT_PATH=@./input.json
curl -v -H "Host: ${SERVICE_HOSTNAME}" http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/$MODEL_NAME:predict -d $INPUT_PATH

Expected Output

$ *   Trying 10.0.1.16...
* TCP_NODELAY set
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0* Connected to 10.0.1.16 (10.0.1.16) port 30749 (#0)
> POST /v1/models/tensorflow-from-uri:predict HTTP/1.1
> Host: tensorflow-from-uri.default.example.com
> User-Agent: curl/7.58.0
> Accept: */*
> Content-Length: 86
> Content-Type: application/x-www-form-urlencoded
> 
} [86 bytes data]
* upload completely sent off: 86 out of 86 bytes
< HTTP/1.1 200 OK
< content-length: 112
< content-type: application/json
< date: Thu, 06 Aug 2020 23:21:19 GMT
< x-envoy-upstream-service-time: 151
< server: istio-envoy
< 
{ [112 bytes data]
100   198  100   112  100    86    722    554 --:--:-- --:--:-- --:--:--  1285
* Connection #0 to host 10.0.1.16 left intact
{
  "predictions": [
    [
      0.0204100646,
      0.680984616,
      0.298605353
    ],
    [
      0.0296604875,
      0.658412039,
      0.311927497
    ]
  ]
}