-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
261 lines (223 loc) · 10.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import datetime
import os.path
import click
from matplotlib import pyplot as plt
from torch.distributed import init_process_group
from torch.nn.parallel import DistributedDataParallel
from torch.optim import Optimizer, Adam
from torch.utils.data import DataLoader, DistributedSampler
import torch.multiprocessing as mp
from tqdm.auto import tqdm
import local_secrets
from constants import *
from dataset import *
from distributed import setup_device
from model.discriminator import Discriminator
from model.generator import Generator
from util.evaluation import *
from util.files import *
from util.visualization import *
def train_loop(
generator: Generator,
discriminator: Discriminator,
dataloader: torch.utils.data.DataLoader,
gen_optimizer: Optimizer,
disc_optimizer: Optimizer,
z_dim: int,
save_step: int = 506,
crit_repeats: int = 1,
n_epochs: int = 1000,
c_lambda: float = 10, # need to be changed
device: int | str | torch.device = 0, # shortcut for cuda:0
display_step: Optional[int] = None,
lazy_gradient_penalty: int = 4,
save_graphics: bool = False,
world_size: int = 1,
rank: int = 0,
weights_path: str = None,
loss_path: str = None
) -> None:
cur_step = 0
generator_losses = []
critic_losses = []
losses = fetch_json(loss_path)
for epoch in tqdm(range(n_epochs), leave=False):
for real in tqdm(dataloader, leave=False):
cur_batch_size = len(real)
real = real.to(device)
fake = None
if cur_step % lazy_gradient_penalty == 0:
real.requires_grad_()
mean_iteration_critic_loss = 0
for _ in range(crit_repeats):
disc_optimizer.zero_grad()
fake_noise = get_noise((cur_batch_size, z_dim), device=device)
fake = generator(fake_noise)
disc_fake_pred = discriminator(fake.detach())
disc_real_pred = discriminator(real)
disc_loss = discriminator_loss(disc_real_pred, disc_fake_pred)
if cur_step % lazy_gradient_penalty == 0:
gp = gradient_penalty(real, disc_real_pred)
disc_loss += gp * c_lambda
mean_iteration_critic_loss += disc_loss.item() / crit_repeats
disc_loss.backward(retain_graph=True)
disc_optimizer.step()
critic_losses += [mean_iteration_critic_loss]
gen_optimizer.zero_grad()
fake_noise_2 = get_noise((cur_batch_size, z_dim), device=device)
fake_2 = generator(fake_noise_2)
disc_fake_pred = discriminator(fake_2)
gen_loss = generator_loss(disc_fake_pred)
gen_loss.backward()
gen_optimizer.step()
generator_losses += [gen_loss.item()]
epoch = int(epoch)
cur_step += 1
if epoch % save_step == 0 and epoch > 0 and rank == 0:
if world_size == 1:
torch.save(generator.state_dict(), f"{weights_path}/generator_{epoch}.pth")
torch.save(discriminator.state_dict(), f"{weights_path}/discriminator_{epoch}.pth")
else:
torch.save(generator.module.state_dict(), f"{weights_path}/generator_{epoch}.pth")
torch.save(discriminator.module.state_dict(), f"{weights_path}/discriminator_{epoch}.pth")
if display_step and rank == 0 and epoch % display_step == 0:
visualize(generator_losses, critic_losses, fake, real, display_step, int(epoch), save_graphics)
losses.get("generator").append(generator_losses)
losses.get("discriminator").append(critic_losses)
if rank == 0:
dump_json(loss_path, losses)
def visualize(
generator_losses: list,
critic_losses: list,
fake: torch.Tensor,
real: torch.Tensor,
n_last: int, epoch: int,
save: bool = False
) -> None:
gen_mean = sum(generator_losses[-n_last:]) / n_last
crit_mean = sum(critic_losses[-n_last:]) / n_last
print(f"Epoch {epoch} | Generator loss: {gen_mean}, critic loss: {crit_mean}")
if save:
show_tensor_images(fake, save_path=f"{SAMPLE_PATH}/fake_sample_{epoch}.png")
show_tensor_images(real, save_path=f"{SAMPLE_PATH}/real_sample_{epoch}.png")
step_bins = 20
num_examples = (len(generator_losses) // step_bins) * step_bins
plt.plot(
range(num_examples // step_bins),
torch.Tensor(generator_losses[:num_examples]).view(-1, step_bins).mean(1),
label="Generator Loss"
)
plt.plot(
range(num_examples // step_bins),
torch.Tensor(critic_losses[:num_examples]).view(-1, step_bins).mean(1),
label="Discriminator Loss"
)
plt.legend()
if save:
plt.savefig(f"{PLOT_PATH}/plot_{epoch}.png")
plt.show(block=False)
plt.pause(1)
plt.close()
@click.command()
@click.option('-epochs', default=100_000, help='number of epochs to train the model for.')
@click.option('-gpus', default=1, help='number of GPUs to train the model on.')
@click.option('-nodes', default=1, help='number of nodes to train the model on.')
@click.option('-rank', default=0, help='rank of the current node.')
@click.option('--resolution', default=32, help='Resolution of the images to train on.')
@click.option('--display-step', default=None, help='Number of steps to display the images for.'
'If none is given, it will not display the images.')
@click.option('--save-step', default=None, help='Number of steps to save the images for.')
@click.option('--batch-size', default=8, help='Batch size to use for training. 8 is the default.')
@click.option('--save-graphics', default=False, help='Whether to save the graphics. False is the default.')
def train(epochs: int,
gpus: int,
nodes: int,
rank: int,
resolution: int,
display_step: Optional[int],
save_step: int,
batch_size: int,
save_graphics: bool) -> None:
config = fetch_json("settings.json")['stylegan2-landscape-32']
c_lambda = 10
crit_repeats = 5
n_epochs = epochs
display_step = int(display_step) if display_step else None
save_step = int(save_step) if save_step else None
#########################################################
# SETUP DIRECTORY STRUCTURE
#########################################################
formatted_date = datetime.datetime.now().strftime("%d%m%y")
# Weights directory
current_weights_date_dir = os.path.join(WEIGHTS_PATH, formatted_date)
if not os.path.exists(current_weights_date_dir):
os.makedirs(current_weights_date_dir)
existing_dirs_amount = len(os.listdir(current_weights_date_dir))
dir_version = f"v{existing_dirs_amount + 1}"
save_path = os.path.join(current_weights_date_dir, dir_version)
if not os.path.exists(save_path):
os.makedirs(save_path)
# Graphics directory
if save_graphics:
to_be_checked = ["plots", "samples"]
for folder in to_be_checked:
if not os.path.exists(folder):
plot_dir = os.path.join(folder, formatted_date, dir_version)
create_dir_or_ignore(plot_dir)
# Losses directory
current_losses_date_dir = os.path.join("losses", formatted_date)
if not os.path.exists(current_losses_date_dir):
os.makedirs(current_losses_date_dir)
existing_dirs_amount = len(os.listdir(current_losses_date_dir))
dir_version = f"v{existing_dirs_amount + 1}"
loss_dir = os.path.join(current_losses_date_dir, dir_version)
if not os.path.exists(loss_dir):
os.makedirs(loss_dir)
loss_path = os.path.join(loss_dir, "losses.json")
dump_json(loss_path, {"generator": [], "discriminator": []})
dataset = Dataset(DATA_PATH, crop_size=resolution)
gen = Generator(**config)
disc = Discriminator(resolution=resolution, n_features=resolution)
optimizers_config = config["optimizers"]
world_size = gpus * nodes
batch_size = batch_size * world_size
if world_size == 1:
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=2)
device = setup_device(0)
gen = gen.to(device)
disc = disc.to(device)
gen_opt = Adam([
{'params': gen.synthesis.parameters(), **optimizers_config['synthesis']},
{'params': gen.mapping.parameters(), **optimizers_config['mapping']}
])
disc_opt = Adam(disc.parameters(), **optimizers_config["discriminator"])
train_loop(generator=gen, discriminator=disc, dataloader=dataloader, gen_optimizer=gen_opt,
disc_optimizer=disc_opt, z_dim=config["z_dim"], crit_repeats=crit_repeats, n_epochs=n_epochs,
c_lambda=c_lambda, device=device, save_step=save_step, display_step=display_step,
world_size=world_size, rank=rank, weights_path=save_path, loss_path=loss_path)
elif world_size > 1:
#########################################################
# SETUP DDP
#########################################################
os.environ['MASTER_ADDR'] = local_secrets.MASTER_ADDR
os.environ['MASTER_PORT'] = local_secrets.PORT
init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank)
device = setup_device(rank)
sampler = DistributedSampler(dataset, rank=rank, num_replicas=world_size)
dataloader = DataLoader(dataset, batch_size=batch_size, sampler=sampler,
shuffle=False, num_workers=2, pin_memory=True)
gen = DistributedDataParallel(gen, device_ids=[rank])
disc = DistributedDataParallel(disc, device_ids=[rank])
gen_opt = Adam([
{'params': gen.synthesis.parameters(), **optimizers_config['synthesis']},
{'params': gen.mapping.parameters(), **optimizers_config['mapping']}
])
disc_opt = Adam(disc.parameters(), **optimizers_config["discriminator"])
mp.spawn(fn=train_loop,
args=(gen, disc, dataloader, gen_opt, disc_opt, config["z_dim"], crit_repeats,
n_epochs, c_lambda, device, save_step, display_step, world_size, rank, save_path, loss_path),
nprocs=gpus)
else:
raise ValueError("World size must be at least 1.")
if __name__ == '__main__':
train()