forked from memcached/memcached
-
Notifications
You must be signed in to change notification settings - Fork 0
/
slabs.c
882 lines (745 loc) · 27.1 KB
/
slabs.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
/* -*- Mode: C; tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- */
/*
* Slabs memory allocation, based on powers-of-N. Slabs are up to 1MB in size
* and are divided into chunks. The chunk sizes start off at the size of the
* "item" structure plus space for a small key and value. They increase by
* a multiplier factor from there, up to half the maximum slab size. The last
* slab size is always 1MB, since that's the maximum item size allowed by the
* memcached protocol.
*/
#include "memcached.h"
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/signal.h>
#include <sys/resource.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <errno.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <pthread.h>
/* powers-of-N allocation structures */
typedef struct {
unsigned int size; /* sizes of items */
unsigned int perslab; /* how many items per slab */
void *slots; /* list of item ptrs */
unsigned int sl_curr; /* total free items in list */
unsigned int slabs; /* how many slabs were allocated for this class */
void **slab_list; /* array of slab pointers */
unsigned int list_size; /* size of prev array */
unsigned int killing; /* index+1 of dying slab, or zero if none */
size_t requested; /* The number of requested bytes */
} slabclass_t;
static slabclass_t slabclass[MAX_NUMBER_OF_SLAB_CLASSES];
static size_t mem_limit = 0;
static size_t mem_malloced = 0;
static int power_largest;
static void *mem_base = NULL;
static void *mem_current = NULL;
static size_t mem_avail = 0;
/**
* Access to the slab allocator is protected by this lock
*/
static pthread_mutex_t slabs_lock = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t slabs_rebalance_lock = PTHREAD_MUTEX_INITIALIZER;
/*
* Forward Declarations
*/
static int do_slabs_newslab(const unsigned int id);
static void *memory_allocate(size_t size);
static void do_slabs_free(void *ptr, const size_t size, unsigned int id);
/* Preallocate as many slab pages as possible (called from slabs_init)
on start-up, so users don't get confused out-of-memory errors when
they do have free (in-slab) space, but no space to make new slabs.
if maxslabs is 18 (POWER_LARGEST - POWER_SMALLEST + 1), then all
slab types can be made. if max memory is less than 18 MB, only the
smaller ones will be made. */
static void slabs_preallocate (const unsigned int maxslabs);
/*
* Figures out which slab class (chunk size) is required to store an item of
* a given size.
*
* Given object size, return id to use when allocating/freeing memory for object
* 0 means error: can't store such a large object
*/
unsigned int slabs_clsid(const size_t size) {
int res = POWER_SMALLEST;
if (size == 0)
return 0;
while (size > slabclass[res].size)
if (res++ == power_largest) /* won't fit in the biggest slab */
return 0;
return res;
}
/**
* Determines the chunk sizes and initializes the slab class descriptors
* accordingly.
*/
void slabs_init(const size_t limit, const double factor, const bool prealloc) {
int i = POWER_SMALLEST - 1;
unsigned int size = sizeof(item) + settings.chunk_size;
mem_limit = limit;
if (prealloc) {
/* Allocate everything in a big chunk with malloc */
mem_base = malloc(mem_limit);
if (mem_base != NULL) {
mem_current = mem_base;
mem_avail = mem_limit;
} else {
fprintf(stderr, "Warning: Failed to allocate requested memory in"
" one large chunk.\nWill allocate in smaller chunks\n");
}
}
memset(slabclass, 0, sizeof(slabclass));
while (++i < POWER_LARGEST && size <= settings.item_size_max / factor) {
/* Make sure items are always n-byte aligned */
if (size % CHUNK_ALIGN_BYTES)
size += CHUNK_ALIGN_BYTES - (size % CHUNK_ALIGN_BYTES);
slabclass[i].size = size;
slabclass[i].perslab = settings.item_size_max / slabclass[i].size;
size *= factor;
if (settings.verbose > 1) {
fprintf(stderr, "slab class %3d: chunk size %9u perslab %7u\n",
i, slabclass[i].size, slabclass[i].perslab);
}
}
power_largest = i;
slabclass[power_largest].size = settings.item_size_max;
slabclass[power_largest].perslab = 1;
if (settings.verbose > 1) {
fprintf(stderr, "slab class %3d: chunk size %9u perslab %7u\n",
i, slabclass[i].size, slabclass[i].perslab);
}
/* for the test suite: faking of how much we've already malloc'd */
{
char *t_initial_malloc = getenv("T_MEMD_INITIAL_MALLOC");
if (t_initial_malloc) {
mem_malloced = (size_t)atol(t_initial_malloc);
}
}
if (prealloc) {
slabs_preallocate(power_largest);
}
}
static void slabs_preallocate (const unsigned int maxslabs) {
int i;
unsigned int prealloc = 0;
/* pre-allocate a 1MB slab in every size class so people don't get
confused by non-intuitive "SERVER_ERROR out of memory"
messages. this is the most common question on the mailing
list. if you really don't want this, you can rebuild without
these three lines. */
for (i = POWER_SMALLEST; i <= POWER_LARGEST; i++) {
if (++prealloc > maxslabs)
return;
if (do_slabs_newslab(i) == 0) {
fprintf(stderr, "Error while preallocating slab memory!\n"
"If using -L or other prealloc options, max memory must be "
"at least %d megabytes.\n", power_largest);
exit(1);
}
}
}
static int grow_slab_list (const unsigned int id) {
slabclass_t *p = &slabclass[id];
if (p->slabs == p->list_size) {
size_t new_size = (p->list_size != 0) ? p->list_size * 2 : 16;
void *new_list = realloc(p->slab_list, new_size * sizeof(void *));
if (new_list == 0) return 0;
p->list_size = new_size;
p->slab_list = new_list;
}
return 1;
}
static void split_slab_page_into_freelist(char *ptr, const unsigned int id) {
slabclass_t *p = &slabclass[id];
int x;
for (x = 0; x < p->perslab; x++) {
do_slabs_free(ptr, 0, id);
ptr += p->size;
}
}
static int do_slabs_newslab(const unsigned int id) {
slabclass_t *p = &slabclass[id];
int len = settings.slab_reassign ? settings.item_size_max
: p->size * p->perslab;
char *ptr;
if ((mem_limit && mem_malloced + len > mem_limit && p->slabs > 0) ||
(grow_slab_list(id) == 0) ||
((ptr = memory_allocate((size_t)len)) == 0)) {
MEMCACHED_SLABS_SLABCLASS_ALLOCATE_FAILED(id);
return 0;
}
memset(ptr, 0, (size_t)len);
split_slab_page_into_freelist(ptr, id);
p->slab_list[p->slabs++] = ptr;
mem_malloced += len;
MEMCACHED_SLABS_SLABCLASS_ALLOCATE(id);
return 1;
}
/*@null@*/
static void *do_slabs_alloc(const size_t size, unsigned int id) {
slabclass_t *p;
void *ret = NULL;
item *it = NULL;
if (id < POWER_SMALLEST || id > power_largest) {
MEMCACHED_SLABS_ALLOCATE_FAILED(size, 0);
return NULL;
}
p = &slabclass[id];
assert(p->sl_curr == 0 || ((item *)p->slots)->slabs_clsid == 0);
/* fail unless we have space at the end of a recently allocated page,
we have something on our freelist, or we could allocate a new page */
if (! (p->sl_curr != 0 || do_slabs_newslab(id) != 0)) {
/* We don't have more memory available */
ret = NULL;
} else if (p->sl_curr != 0) {
/* return off our freelist */
it = (item *)p->slots;
p->slots = it->next;
if (it->next) it->next->prev = 0;
p->sl_curr--;
ret = (void *)it;
}
if (ret) {
p->requested += size;
MEMCACHED_SLABS_ALLOCATE(size, id, p->size, ret);
} else {
MEMCACHED_SLABS_ALLOCATE_FAILED(size, id);
}
return ret;
}
static void do_slabs_free(void *ptr, const size_t size, unsigned int id) {
slabclass_t *p;
item *it;
assert(((item *)ptr)->slabs_clsid == 0);
assert(id >= POWER_SMALLEST && id <= power_largest);
if (id < POWER_SMALLEST || id > power_largest)
return;
MEMCACHED_SLABS_FREE(size, id, ptr);
p = &slabclass[id];
it = (item *)ptr;
it->it_flags |= ITEM_SLABBED;
it->prev = 0;
it->next = p->slots;
if (it->next) it->next->prev = it;
p->slots = it;
p->sl_curr++;
p->requested -= size;
return;
}
static int nz_strcmp(int nzlength, const char *nz, const char *z) {
int zlength=strlen(z);
return (zlength == nzlength) && (strncmp(nz, z, zlength) == 0) ? 0 : -1;
}
bool get_stats(const char *stat_type, int nkey, ADD_STAT add_stats, void *c) {
bool ret = true;
if (add_stats != NULL) {
if (!stat_type) {
/* prepare general statistics for the engine */
STATS_LOCK();
APPEND_STAT("bytes", "%llu", (unsigned long long)stats.curr_bytes);
APPEND_STAT("curr_items", "%u", stats.curr_items);
APPEND_STAT("total_items", "%u", stats.total_items);
STATS_UNLOCK();
item_stats_totals(add_stats, c);
} else if (nz_strcmp(nkey, stat_type, "items") == 0) {
item_stats(add_stats, c);
} else if (nz_strcmp(nkey, stat_type, "slabs") == 0) {
slabs_stats(add_stats, c);
} else if (nz_strcmp(nkey, stat_type, "sizes") == 0) {
item_stats_sizes(add_stats, c);
} else {
ret = false;
}
} else {
ret = false;
}
return ret;
}
/*@null@*/
static void do_slabs_stats(ADD_STAT add_stats, void *c) {
int i, total;
/* Get the per-thread stats which contain some interesting aggregates */
struct thread_stats thread_stats;
threadlocal_stats_aggregate(&thread_stats);
total = 0;
for(i = POWER_SMALLEST; i <= power_largest; i++) {
slabclass_t *p = &slabclass[i];
if (p->slabs != 0) {
uint32_t perslab, slabs;
slabs = p->slabs;
perslab = p->perslab;
char key_str[STAT_KEY_LEN];
char val_str[STAT_VAL_LEN];
int klen = 0, vlen = 0;
APPEND_NUM_STAT(i, "chunk_size", "%u", p->size);
APPEND_NUM_STAT(i, "chunks_per_page", "%u", perslab);
APPEND_NUM_STAT(i, "total_pages", "%u", slabs);
APPEND_NUM_STAT(i, "total_chunks", "%u", slabs * perslab);
APPEND_NUM_STAT(i, "used_chunks", "%u",
slabs*perslab - p->sl_curr);
APPEND_NUM_STAT(i, "free_chunks", "%u", p->sl_curr);
/* Stat is dead, but displaying zero instead of removing it. */
APPEND_NUM_STAT(i, "free_chunks_end", "%u", 0);
APPEND_NUM_STAT(i, "mem_requested", "%llu",
(unsigned long long)p->requested);
APPEND_NUM_STAT(i, "get_hits", "%llu",
(unsigned long long)thread_stats.slab_stats[i].get_hits);
APPEND_NUM_STAT(i, "cmd_set", "%llu",
(unsigned long long)thread_stats.slab_stats[i].set_cmds);
APPEND_NUM_STAT(i, "delete_hits", "%llu",
(unsigned long long)thread_stats.slab_stats[i].delete_hits);
APPEND_NUM_STAT(i, "incr_hits", "%llu",
(unsigned long long)thread_stats.slab_stats[i].incr_hits);
APPEND_NUM_STAT(i, "decr_hits", "%llu",
(unsigned long long)thread_stats.slab_stats[i].decr_hits);
APPEND_NUM_STAT(i, "cas_hits", "%llu",
(unsigned long long)thread_stats.slab_stats[i].cas_hits);
APPEND_NUM_STAT(i, "cas_badval", "%llu",
(unsigned long long)thread_stats.slab_stats[i].cas_badval);
APPEND_NUM_STAT(i, "touch_hits", "%llu",
(unsigned long long)thread_stats.slab_stats[i].touch_hits);
total++;
}
}
/* add overall slab stats and append terminator */
APPEND_STAT("active_slabs", "%d", total);
APPEND_STAT("total_malloced", "%llu", (unsigned long long)mem_malloced);
add_stats(NULL, 0, NULL, 0, c);
}
static void *memory_allocate(size_t size) {
void *ret;
if (mem_base == NULL) {
/* We are not using a preallocated large memory chunk */
ret = malloc(size);
} else {
ret = mem_current;
if (size > mem_avail) {
return NULL;
}
/* mem_current pointer _must_ be aligned!!! */
if (size % CHUNK_ALIGN_BYTES) {
size += CHUNK_ALIGN_BYTES - (size % CHUNK_ALIGN_BYTES);
}
mem_current = ((char*)mem_current) + size;
if (size < mem_avail) {
mem_avail -= size;
} else {
mem_avail = 0;
}
}
return ret;
}
void *slabs_alloc(size_t size, unsigned int id) {
void *ret;
pthread_mutex_lock(&slabs_lock);
ret = do_slabs_alloc(size, id);
pthread_mutex_unlock(&slabs_lock);
return ret;
}
void slabs_free(void *ptr, size_t size, unsigned int id) {
pthread_mutex_lock(&slabs_lock);
do_slabs_free(ptr, size, id);
pthread_mutex_unlock(&slabs_lock);
}
void slabs_stats(ADD_STAT add_stats, void *c) {
pthread_mutex_lock(&slabs_lock);
do_slabs_stats(add_stats, c);
pthread_mutex_unlock(&slabs_lock);
}
void slabs_adjust_mem_requested(unsigned int id, size_t old, size_t ntotal)
{
pthread_mutex_lock(&slabs_lock);
slabclass_t *p;
if (id < POWER_SMALLEST || id > power_largest) {
fprintf(stderr, "Internal error! Invalid slab class\n");
abort();
}
p = &slabclass[id];
p->requested = p->requested - old + ntotal;
pthread_mutex_unlock(&slabs_lock);
}
static pthread_cond_t maintenance_cond = PTHREAD_COND_INITIALIZER;
static pthread_cond_t slab_rebalance_cond = PTHREAD_COND_INITIALIZER;
static volatile int do_run_slab_thread = 1;
static volatile int do_run_slab_rebalance_thread = 1;
#define DEFAULT_SLAB_BULK_CHECK 1
int slab_bulk_check = DEFAULT_SLAB_BULK_CHECK;
static int slab_rebalance_start(void) {
slabclass_t *s_cls;
int no_go = 0;
pthread_mutex_lock(&cache_lock);
pthread_mutex_lock(&slabs_lock);
if (slab_rebal.s_clsid < POWER_SMALLEST ||
slab_rebal.s_clsid > power_largest ||
slab_rebal.d_clsid < POWER_SMALLEST ||
slab_rebal.d_clsid > power_largest ||
slab_rebal.s_clsid == slab_rebal.d_clsid)
no_go = -2;
s_cls = &slabclass[slab_rebal.s_clsid];
if (!grow_slab_list(slab_rebal.d_clsid)) {
no_go = -1;
}
if (s_cls->slabs < 2)
no_go = -3;
if (no_go != 0) {
pthread_mutex_unlock(&slabs_lock);
pthread_mutex_unlock(&cache_lock);
return no_go; /* Should use a wrapper function... */
}
s_cls->killing = 1;
slab_rebal.slab_start = s_cls->slab_list[s_cls->killing - 1];
slab_rebal.slab_end = (char *)slab_rebal.slab_start +
(s_cls->size * s_cls->perslab);
slab_rebal.slab_pos = slab_rebal.slab_start;
slab_rebal.done = 0;
/* Also tells do_item_get to search for items in this slab */
slab_rebalance_signal = 2;
if (settings.verbose > 1) {
fprintf(stderr, "Started a slab rebalance\n");
}
pthread_mutex_unlock(&slabs_lock);
pthread_mutex_unlock(&cache_lock);
STATS_LOCK();
stats.slab_reassign_running = true;
STATS_UNLOCK();
return 0;
}
enum move_status {
MOVE_PASS=0, MOVE_DONE, MOVE_BUSY, MOVE_LOCKED
};
/* refcount == 0 is safe since nobody can incr while cache_lock is held.
* refcount != 0 is impossible since flags/etc can be modified in other
* threads. instead, note we found a busy one and bail. logic in do_item_get
* will prevent busy items from continuing to be busy
*/
static int slab_rebalance_move(void) {
slabclass_t *s_cls;
int x;
int was_busy = 0;
int refcount = 0;
enum move_status status = MOVE_PASS;
pthread_mutex_lock(&cache_lock);
pthread_mutex_lock(&slabs_lock);
s_cls = &slabclass[slab_rebal.s_clsid];
for (x = 0; x < slab_bulk_check; x++) {
item *it = slab_rebal.slab_pos;
status = MOVE_PASS;
if (it->slabs_clsid != 255) {
void *hold_lock = NULL;
uint32_t hv = hash(ITEM_key(it), it->nkey, 0);
if ((hold_lock = item_trylock(hv)) == NULL) {
status = MOVE_LOCKED;
} else {
refcount = refcount_incr(&it->refcount);
if (refcount == 1) { /* item is unlinked, unused */
if (it->it_flags & ITEM_SLABBED) {
/* remove from slab freelist */
if (s_cls->slots == it) {
s_cls->slots = it->next;
}
if (it->next) it->next->prev = it->prev;
if (it->prev) it->prev->next = it->next;
s_cls->sl_curr--;
status = MOVE_DONE;
} else {
status = MOVE_BUSY;
}
} else if (refcount == 2) { /* item is linked but not busy */
if ((it->it_flags & ITEM_LINKED) != 0) {
do_item_unlink_nolock(it, hash(ITEM_key(it), it->nkey, 0));
status = MOVE_DONE;
} else {
/* refcount == 1 + !ITEM_LINKED means the item is being
* uploaded to, or was just unlinked but hasn't been freed
* yet. Let it bleed off on its own and try again later */
status = MOVE_BUSY;
}
} else {
if (settings.verbose > 2) {
fprintf(stderr, "Slab reassign hit a busy item: refcount: %d (%d -> %d)\n",
it->refcount, slab_rebal.s_clsid, slab_rebal.d_clsid);
}
status = MOVE_BUSY;
}
item_trylock_unlock(hold_lock);
}
}
switch (status) {
case MOVE_DONE:
it->refcount = 0;
it->it_flags = 0;
it->slabs_clsid = 255;
break;
case MOVE_BUSY:
refcount_decr(&it->refcount);
case MOVE_LOCKED:
slab_rebal.busy_items++;
was_busy++;
break;
case MOVE_PASS:
break;
}
slab_rebal.slab_pos = (char *)slab_rebal.slab_pos + s_cls->size;
if (slab_rebal.slab_pos >= slab_rebal.slab_end)
break;
}
if (slab_rebal.slab_pos >= slab_rebal.slab_end) {
/* Some items were busy, start again from the top */
if (slab_rebal.busy_items) {
slab_rebal.slab_pos = slab_rebal.slab_start;
slab_rebal.busy_items = 0;
} else {
slab_rebal.done++;
}
}
pthread_mutex_unlock(&slabs_lock);
pthread_mutex_unlock(&cache_lock);
return was_busy;
}
static void slab_rebalance_finish(void) {
slabclass_t *s_cls;
slabclass_t *d_cls;
pthread_mutex_lock(&cache_lock);
pthread_mutex_lock(&slabs_lock);
s_cls = &slabclass[slab_rebal.s_clsid];
d_cls = &slabclass[slab_rebal.d_clsid];
/* At this point the stolen slab is completely clear */
s_cls->slab_list[s_cls->killing - 1] =
s_cls->slab_list[s_cls->slabs - 1];
s_cls->slabs--;
s_cls->killing = 0;
memset(slab_rebal.slab_start, 0, (size_t)settings.item_size_max);
d_cls->slab_list[d_cls->slabs++] = slab_rebal.slab_start;
split_slab_page_into_freelist(slab_rebal.slab_start,
slab_rebal.d_clsid);
slab_rebal.done = 0;
slab_rebal.s_clsid = 0;
slab_rebal.d_clsid = 0;
slab_rebal.slab_start = NULL;
slab_rebal.slab_end = NULL;
slab_rebal.slab_pos = NULL;
slab_rebalance_signal = 0;
pthread_mutex_unlock(&slabs_lock);
pthread_mutex_unlock(&cache_lock);
STATS_LOCK();
stats.slab_reassign_running = false;
stats.slabs_moved++;
STATS_UNLOCK();
if (settings.verbose > 1) {
fprintf(stderr, "finished a slab move\n");
}
}
/* Return 1 means a decision was reached.
* Move to its own thread (created/destroyed as needed) once automover is more
* complex.
*/
static int slab_automove_decision(int *src, int *dst) {
static uint64_t evicted_old[POWER_LARGEST];
static unsigned int slab_zeroes[POWER_LARGEST];
static unsigned int slab_winner = 0;
static unsigned int slab_wins = 0;
uint64_t evicted_new[POWER_LARGEST];
uint64_t evicted_diff = 0;
uint64_t evicted_max = 0;
unsigned int highest_slab = 0;
unsigned int total_pages[POWER_LARGEST];
int i;
int source = 0;
int dest = 0;
static rel_time_t next_run;
/* Run less frequently than the slabmove tester. */
if (current_time >= next_run) {
next_run = current_time + 10;
} else {
return 0;
}
item_stats_evictions(evicted_new);
pthread_mutex_lock(&cache_lock);
for (i = POWER_SMALLEST; i < power_largest; i++) {
total_pages[i] = slabclass[i].slabs;
}
pthread_mutex_unlock(&cache_lock);
/* Find a candidate source; something with zero evicts 3+ times */
for (i = POWER_SMALLEST; i < power_largest; i++) {
evicted_diff = evicted_new[i] - evicted_old[i];
if (evicted_diff == 0 && total_pages[i] > 2) {
slab_zeroes[i]++;
if (source == 0 && slab_zeroes[i] >= 3)
source = i;
} else {
slab_zeroes[i] = 0;
if (evicted_diff > evicted_max) {
evicted_max = evicted_diff;
highest_slab = i;
}
}
evicted_old[i] = evicted_new[i];
}
/* Pick a valid destination */
if (slab_winner != 0 && slab_winner == highest_slab) {
slab_wins++;
if (slab_wins >= 3)
dest = slab_winner;
} else {
slab_wins = 1;
slab_winner = highest_slab;
}
if (source && dest) {
*src = source;
*dst = dest;
return 1;
}
return 0;
}
/* Slab rebalancer thread.
* Does not use spinlocks since it is not timing sensitive. Burn less CPU and
* go to sleep if locks are contended
*/
static void *slab_maintenance_thread(void *arg) {
int src, dest;
while (do_run_slab_thread) {
if (settings.slab_automove == 1) {
if (slab_automove_decision(&src, &dest) == 1) {
/* Blind to the return codes. It will retry on its own */
slabs_reassign(src, dest);
}
sleep(1);
} else {
/* Don't wake as often if we're not enabled.
* This is lazier than setting up a condition right now. */
sleep(5);
}
}
return NULL;
}
/* Slab mover thread.
* Sits waiting for a condition to jump off and shovel some memory about
*/
static void *slab_rebalance_thread(void *arg) {
int was_busy = 0;
/* So we first pass into cond_wait with the mutex held */
mutex_lock(&slabs_rebalance_lock);
while (do_run_slab_rebalance_thread) {
if (slab_rebalance_signal == 1) {
if (slab_rebalance_start() < 0) {
/* Handle errors with more specifity as required. */
slab_rebalance_signal = 0;
}
was_busy = 0;
} else if (slab_rebalance_signal && slab_rebal.slab_start != NULL) {
was_busy = slab_rebalance_move();
}
if (slab_rebal.done) {
slab_rebalance_finish();
} else if (was_busy) {
/* Stuck waiting for some items to unlock, so slow down a bit
* to give them a chance to free up */
usleep(50);
}
if (slab_rebalance_signal == 0) {
/* always hold this lock while we're running */
pthread_cond_wait(&slab_rebalance_cond, &slabs_rebalance_lock);
}
}
return NULL;
}
/* Iterate at most once through the slab classes and pick a "random" source.
* I like this better than calling rand() since rand() is slow enough that we
* can just check all of the classes once instead.
*/
static int slabs_reassign_pick_any(int dst) {
static int cur = POWER_SMALLEST - 1;
int tries = power_largest - POWER_SMALLEST + 1;
for (; tries > 0; tries--) {
cur++;
if (cur > power_largest)
cur = POWER_SMALLEST;
if (cur == dst)
continue;
if (slabclass[cur].slabs > 1) {
return cur;
}
}
return -1;
}
static enum reassign_result_type do_slabs_reassign(int src, int dst) {
if (slab_rebalance_signal != 0)
return REASSIGN_RUNNING;
if (src == dst)
return REASSIGN_SRC_DST_SAME;
/* Special indicator to choose ourselves. */
if (src == -1) {
src = slabs_reassign_pick_any(dst);
/* TODO: If we end up back at -1, return a new error type */
}
if (src < POWER_SMALLEST || src > power_largest ||
dst < POWER_SMALLEST || dst > power_largest)
return REASSIGN_BADCLASS;
if (slabclass[src].slabs < 2)
return REASSIGN_NOSPARE;
slab_rebal.s_clsid = src;
slab_rebal.d_clsid = dst;
slab_rebalance_signal = 1;
pthread_cond_signal(&slab_rebalance_cond);
return REASSIGN_OK;
}
enum reassign_result_type slabs_reassign(int src, int dst) {
enum reassign_result_type ret;
if (pthread_mutex_trylock(&slabs_rebalance_lock) != 0) {
return REASSIGN_RUNNING;
}
ret = do_slabs_reassign(src, dst);
pthread_mutex_unlock(&slabs_rebalance_lock);
return ret;
}
/* If we hold this lock, rebalancer can't wake up or move */
void slabs_rebalancer_pause(void) {
pthread_mutex_lock(&slabs_rebalance_lock);
}
void slabs_rebalancer_resume(void) {
pthread_mutex_unlock(&slabs_rebalance_lock);
}
static pthread_t maintenance_tid;
static pthread_t rebalance_tid;
int start_slab_maintenance_thread(void) {
int ret;
slab_rebalance_signal = 0;
slab_rebal.slab_start = NULL;
char *env = getenv("MEMCACHED_SLAB_BULK_CHECK");
if (env != NULL) {
slab_bulk_check = atoi(env);
if (slab_bulk_check == 0) {
slab_bulk_check = DEFAULT_SLAB_BULK_CHECK;
}
}
if (pthread_cond_init(&slab_rebalance_cond, NULL) != 0) {
fprintf(stderr, "Can't intiialize rebalance condition\n");
return -1;
}
pthread_mutex_init(&slabs_rebalance_lock, NULL);
if ((ret = pthread_create(&maintenance_tid, NULL,
slab_maintenance_thread, NULL)) != 0) {
fprintf(stderr, "Can't create slab maint thread: %s\n", strerror(ret));
return -1;
}
if ((ret = pthread_create(&rebalance_tid, NULL,
slab_rebalance_thread, NULL)) != 0) {
fprintf(stderr, "Can't create rebal thread: %s\n", strerror(ret));
return -1;
}
return 0;
}
void stop_slab_maintenance_thread(void) {
mutex_lock(&cache_lock);
do_run_slab_thread = 0;
do_run_slab_rebalance_thread = 0;
pthread_cond_signal(&maintenance_cond);
pthread_mutex_unlock(&cache_lock);
/* Wait for the maintenance thread to stop */
pthread_join(maintenance_tid, NULL);
pthread_join(rebalance_tid, NULL);
}