-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistance_estimation.py
executable file
·199 lines (159 loc) · 5.76 KB
/
distance_estimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python3
# Attempt at using the DigiInfo together with the two position estimates to
# actually calculate the distance between the tip emitter and tilt emitter.
# Didn't really pan out as the DigiInfo tilt data seems to be updating
# infrequently.
import sys
import math
import shelve
from ipts import iptsd_read, extract_reports, IptsDftWindowPosition, IptsDftWindowPressure, group_reports
from iptsd import IptsdConfig, clamp, obtain_state
from ground_truth import generalise_digi, wintilt_to_yaw_tilt
from digi_info import load_digiinfo_xml
def euclid(a, b):
dx = a[0] - b[0]
dy = a[1] - b[1]
return math.sqrt(dx * dx + dy * dy)
def naive_correlator(states, digi):
def find_best_digi(sp, start=0):
dist = float("inf")
best_i = None
for i in range(start, len(digi)):
c = digi[i]
dp = (c.x, c.y)
newdist = euclid(sp, dp)
if newdist < dist:
best_i = i
dist = newdist
return best_i
digi_i = 0
for state in states:
dx = state["xt"] - state["x"]
dy = state["yt"] - state["y"]
yaw = math.atan2(dy, dx)
sp = (state["x"], state["y"])
di = find_best_digi(sp, digi_i)
if di:
state["digi"] = digi[di]
# digi_i = di
def add_edges(states, show=True):
import matplotlib.pyplot as plt
x = []
y = []
for state in states:
if not "digi" in state:
continue
x.append(state["x"])
x.append(state["digi"].x)
x.append(float("nan"))
y.append(state["y"])
y.append(state["digi"].y)
y.append(float("nan"))
plt.plot(x, y)
if show:
plt.show()
def cached_calc(args):
v = 0
key = f"{args.iptsd}_{args.digi}_{v}"
with shelve.open('/tmp/distance_cache.shelf') as db:
if key in db:
return db[key]
else:
z = iptsd_read(args.iptsd)
report_types = set([IptsDftWindowPosition, IptsDftWindowPressure])
reports = extract_reports(z, report_types)
truth = generalise_digi(load_digiinfo_xml(args.digi), rowcol=True)
grouped = group_reports(reports, report_types)
states = obtain_state(grouped)
naive_correlator(states, truth)
db[key] = states
return states
def run_estimate_distances(args):
states = cached_calc(args)
# from analyse import show_trajectory
# xy_state = [(state["x"], state["y"]) for state in states if bool(state)]
# xy_truth = [(state["digi"].x, state["digi"].y) for state in states if "digi" in state]
# show_trajectory({'xy_state': xy_state, 'xy_truth': xy_truth})
# add_edges(states)
pressed = []
for state in states:
if "pressure" in state and state["pressure"] != 0.0 and "yt" in state and abs(state["yt"]) < 1e6:
pressed.append(state)
if args.skip_start:
pressed = pressed[args.skip_start:]
if args.skip_end:
# print(args.skip_end)
# print(len(states))
pressed = pressed[:-args.skip_end]
# print(len(pressed))
# lj
# L = 2.0
for state in pressed:
# Project to local frame
digi_yaw, digi_tilt = wintilt_to_yaw_tilt(state["digi"].x_t, state["digi"].y_t)
# print(state)
xl = state["xt"] - state["x"]
yl = state["yt"] - state["y"]
state["xl"] = xl
state["yl"] = yl
yaw = math.atan2(yl, xl)
hypot = math.sqrt(xl * xl + yl * yl)
# print(f"Yaw: {yaw} digi yaw: {digi_yaw}")
# if (hypot > L):
# hypot = float("nan")
# hypot = clamp(hypot, 0, L)
# We know that the actual length doesn't change
# alpha = math.acos(hypot / L)
L = hypot / math.cos(digi_tilt)
print(L)
alpha = digi_yaw
# beta = math.sin(alpha) * L
state["beta"] = digi_tilt
xs = [p["xl"] for p in pressed]
ys = [p["yl"] for p in pressed]
zs = [p["beta"] for p in pressed]
# print(xs)
# sys.exit(0)
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_aspect('equal')
ax.scatter(xs, ys, zs)
ax.set_xlim3d([-L, L])
ax.set_ylim3d([-L, L])
ax.set_zlim3d([0, 2*L])
# fig.axis('equal')
# ax.set_box_aspect([1,1,1])
# We don't know height
# We don't know the used angle ranges.
# A meter long pole will only cause small 'd' shadows if used with
# A small angle deviation.
# In short, we need more data.
draw_circle = False
# draw_circle = True
if draw_circle:
import numpy as np
u = np.linspace(0, 2 * np.pi, 50)
v = np.linspace(0, np.pi, 50)
x = L * np.outer(np.cos(u), np.sin(v))
y = L * np.outer(np.sin(u), np.sin(v))
z = L * np.outer(np.ones(np.size(u)), np.cos(v))
ax.scatter(x, y, z)
plt.show()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest="command")
compare_parser = subparsers.add_parser('estimate')
compare_parser.add_argument("--skip-start", help="Indicies to skip at the start", type=int, default=0)
compare_parser.add_argument("--skip-end", help="Indicies to skip at the end", type=int, default=None)
compare_parser.add_argument("--digi", help="estimate ground truth digitizer file to open.")
compare_parser.add_argument("--iptsd", help="The iptsd dump to use.")
compare_parser.set_defaults(func=run_estimate_distances)
args = parser.parse_args()
if (args.command is None):
parser.print_help()
parser.exit()
args.func(args)