-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiptsd.py
executable file
·371 lines (295 loc) · 11.6 KB
/
iptsd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#!/usr/bin/env python3
# Holds python implementations of the algoritms implemented in iptsd.
# Some of them are unverified against c++.
import json
from collections import namedtuple
from enum import Enum
from ipts import DftType, IPTS_DFT_NUM_COMPONENTS, IPTS_DFT_PRESSURE_ROWS, IptsDftWindowPosition, IptsDftWindowPressure, IptsDftWindowButton
DftWindow = namedtuple("Window", ["rows", "type", "x", "y"])
Row = namedtuple("Row", ['freq', 'mag', 'first', 'last', 'mid', 'zero', 'iq'])
Record = namedtuple("Record", ["type", "payload"])
MetadataSize = namedtuple("MetataSize", ["rows", "columns", "width", "height"])
MetataTransform = namedtuple("MetataTransform", ["xx", "yx", "tx", "xy", "yy", "ty"])
Metadata = namedtuple("Metadata", ["size", "transform"])
StylusData = namedtuple("StylusData", ["timestamp", "proximity", "contact", "rubber", "button", "x", "y", "pressure", "altitude", "azimuth", "serial", "x_t", "y_t", "x_ring", "y_ring"])
REAL = 0
IMAG = 1
clamp = lambda x, y, z: max(min(x, z), y)
class IptsdConfig:
def __init__(self):
self.dft_position_min_amp = 50
self.dft_position_min_mag = 2000
self.dft_position_exp = -0.7
self.dft_freq_min_mag = 10000
self.dft_tilt_min_mag = 10000
self.dft_button_min_mag = 1000
def iptsd_json_load(p):
import gzip
entries = []
opener = gzip.open if p.endswith("gz") else open
with opener(p) as f:
d = json.load(f)
for r in d:
if r["type"] == "STYLUS_DATA":
payload = r["payload"]
data = StylusData(**payload)
entries.append(Record(type=r["type"], payload=data))
elif r["type"] == "METADATA":
payload = r["payload"]
size = MetadataSize(**payload["size"])
transform = MetataTransform(**payload["transform"])
metadata = Metadata(size=size, transform=transform)
entries.append(Record(type=r["type"], payload=metadata))
else:
# DFT frame
looked_up_type = DftType[r["type"]]
if looked_up_type in (DftType.IPTS_DFT_ID_POSITION, DftType.IPTS_DFT_ID_POSITION2, DftType.IPTS_DFT_ID_BUTTON, DftType.IPTS_DFT_ID_PRESSURE):
payload = r["payload"]
x = [Row(**v) for v in payload["x"]]
y = [Row(**v) for v in payload["y"]]
window = DftWindow(rows=payload["rows"], type=payload["type"], x=x, y=y)
entries.append(Record(type=looked_up_type, payload=window))
return entries
def _convert_row(row):
if hasattr(row, "real"):
return Row(**dict(
freq = row.frequency,
mag = row.magnitude,
first= row.first,
last = row.last,
mid = row.mid,
zero = row.zero,
iq = [(row.real[i], row.imag[i]) for i in range(IPTS_DFT_NUM_COMPONENTS)]
))
return row
def cpp_interpolate_pos(row, config, maxi_override = None):
import math
row = _convert_row(row)
# // assume the center component has the max amplitude
maxi = int(IPTS_DFT_NUM_COMPONENTS / 2)
# maxi = get_maxi(row)
if maxi_override is not None:
maxi = maxi_override
# // off-screen components are always zero, don't use them
mind = -0.5
maxd = 0.5
if (row.iq[maxi - 1][REAL] == 0 and row.iq[maxi - 1][IMAG] == 0):
maxi += 1
mind = -1.0
elif (row.iq[maxi + 1][REAL] == 0 and row.iq[maxi +1][IMAG] == 0):
maxi -= 1
maxd = 1.0
# // get phase-aligned amplitudes of the three center components
amp = float(math.hypot(row.iq[maxi][REAL], row.iq[maxi][IMAG]))
# print(f"amp: {amp}")
# print(f"maxi: {maxi}")
# print(f"maxd: {maxd}")
if amp < config.dft_position_min_amp:
return float("NaN")
# const f64 sin = gsl::at(row.real, maxi) / amp;
# const f64 cos = gsl::at(row.imag, maxi) / amp;
f64_sin = float(row.iq[maxi][REAL] / amp)
f64_cos = float(row.iq[maxi][IMAG] / amp)
# print(f"f64_sin: {f64_sin}")
# print(f"f64_cos: {f64_cos}")
x = [
f64_sin * row.iq[maxi - 1][REAL] + f64_cos * row.iq[maxi - 1][IMAG],
amp,
f64_sin * row.iq[maxi + 1][REAL] + f64_cos * row.iq[maxi + 1][IMAG],
]
# print(f"x[0]: {x[0]}")
# print(f"x[1]: {x[1]}")
# print(f"x[2]: {x[2]}")
# // convert the amplitudes into something we can fit a parabola to
try:
x = [math.pow(abs(v), config.dft_position_exp) for v in x]
except ValueError:
return float("NaN")
# print(f"x[0]: {x[0]}")
# print(f"x[1]: {x[1]}")
# print(f"x[2]: {x[2]}")
# // check orientation of fitted parabola
if (x[0] + x[2] <= (2.0 * x[1])):
return float("NaN")
# // find critical point of fitted parabola
# const f64 d = (x[0] - x[2]) / (2 * (x[0] - 2 * x[1] + x[2]));
# Sort of like quadterp from [1]?
f64_d = float(x[0] - x[2]) / (2.0 * (x[0] - 2.0 * x[1] + x[2]))
# print(f"f64_d: {f64_d}")
# print(f"row.first: {row.first}")
return row.first + maxi + clamp(f64_d, mind, maxd)
def cpp_interpolate_frequency(window, config, maxi_override=None):
rows = IPTS_DFT_PRESSURE_ROWS
if rows < 3:
return float("NaN")
maxi = 0
maxm = 0
maxi_pairs = []
for i in range(rows):
m = _convert_row(window.x[i]).mag + _convert_row(window.y[i]).mag
maxi_pairs.append((m, i))
if m > maxm:
maxm = m
maxi = i
if maxi_override is not None:
maxi_pairs = sorted(maxi_pairs)[::-1]
maxi = maxi_pairs[maxi_override][1]
# print(maxi)
if maxm < 2.0 * config.dft_freq_min_mag:
return float("NaN")
mind = -0.5
maxd = 0.5
if maxi < 1:
maxi = 1
mind = -1
elif maxi > rows - 2:
maxi = rows - 2
maxd = 1
real = [0, 0, 0]
imag = [0, 0, 0]
# /*
# * all components in a row have the same phase, and corresponding x and y rows also
# * have the same phase, so we can add everything together
# */
for i in range(3):
for j in range(IPTS_DFT_NUM_COMPONENTS):
rowx = _convert_row(window.x[maxi + i - 1])
rowy = _convert_row(window.y[maxi + i - 1])
real[i] += rowx.iq[j][REAL] + rowx.iq[j][REAL]
imag[i] += rowx.iq[j][IMAG] + rowx.iq[j][IMAG]
# // interpolate using Eric Jacobsen's modified quadratic estimator
ra = real[0] - real[2]
rb = 2 * real[1] - real[0] - real[2]
ia = imag[0] - imag[2]
ib = 2 * imag[1] - imag[0] - imag[2]
denom = (rb * rb + ib * ib)
if denom == 0:
return float("nan")
d = (ra * rb + ia * ib) / denom
return (maxi + clamp(d, mind, maxd)) / (rows - 1)
def cpp_handle_button(dft_button, dft_position, config=IptsdConfig()):
if dft_button.header.num_rows <= 0:
return None
# Skip the group check, it doesn't affect the issues on our side.
button = False
eraser = False
mid = int(IPTS_DFT_NUM_COMPONENTS / 2)
prowx = _convert_row(dft_position.x[0])
prowy = _convert_row(dft_position.y[0])
m_real = prowx.iq[mid][REAL] + prowy.iq[mid][REAL]
m_imag = prowx.iq[mid][IMAG] + prowy.iq[mid][IMAG]
rowx = _convert_row(dft_button.x[0])
rowy = _convert_row(dft_button.y[0])
if (rowx.mag > config.dft_button_min_mag and rowy.mag > config.dft_button_min_mag):
real = rowx.iq[mid][REAL] + rowy.iq[mid][REAL]
imag = rowx.iq[mid][IMAG] + rowy.iq[mid][IMAG]
# same phase as position signal = eraser, opposite phase = button
val = m_real * real + m_imag * imag
button = val < 0
rubber = val > 0
return (button, eraser)
def process_button(dft_button, dft_position, config=IptsdConfig()):
if dft_button is None or dft_position is None:
return None
res = {}
z = cpp_handle_button(dft_button,dft_position, config)
if z is not None:
res["button"] = z[0]
res["eraser"] = z[1]
return res
def process_position(dft, config = IptsdConfig()):
if dft is None or dft.header.num_rows <= 1:
return None
res = {}
if dft.x[0].magnitude <= config.dft_position_min_mag or dft.y[0].magnitude <= config.dft_position_min_mag:
return None
x = cpp_interpolate_pos(dft.x[0], config)
y = cpp_interpolate_pos(dft.y[0], config)
res["x"] = x
res["y"] = y
res["x_t"] = float("nan")
res["y_t"] = float("nan")
if dft.x[1].magnitude > config.dft_tilt_min_mag and dft.y[1].magnitude > config.dft_tilt_min_mag:
xt = cpp_interpolate_pos(dft.x[1], config)
yt = cpp_interpolate_pos(dft.y[1], config)
res["x_t"] = xt
res["y_t"] = yt
return res
def process_pressure(dft, config = IptsdConfig()):
if dft is None or dft.header.num_rows <= 1:
return None
res = {}
p = cpp_interpolate_frequency(dft, config)
p = 1.0 - p
if p > 0:
res["contact"] = True
res["pressure"] = clamp(p, 0.0, 1.0)
else:
res["contact"] = False
res["pressure"] = 0.0
return res
def obtain_state(grouped, insert_group=False, config = IptsdConfig()):
records = []
for group in grouped:
current = {}
pos = process_position(group.get(IptsDftWindowPosition, None), config=config)
if pos:
current.update(pos)
pressure = process_pressure(group.get(IptsDftWindowPressure, None), config=config)
if pressure:
current.update(pressure)
button = process_button(group.get(IptsDftWindowButton, None), group.get(IptsDftWindowPosition, None), config=config)
if button:
current.update(button)
if insert_group:
current["group"] = group
records.append(current)
return records
def write_states(fname, records):
import json
import copy
clean_records = []
for r in records:
clean_records.append({k:r[k] for k in r.keys() if k != "group"})
with open(fname, "w") as f:
json.dump(clean_records, f)
class ButtonGlitchFixUsing0x0a:
def __init__(self):
self.m_dft_0x0a_group = None
self.m_metadata = None
self.button = False
def feed_report(self, report):
from ipts import IptsPenMetadata, IptsDftWindow0x0a
if isinstance(report, IptsPenMetadata):
self.m_metadata = report
if isinstance(report, IptsDftWindow0x0a):
self.handle_window(report)
def handle_window(self, dft):
if dft.header.seq_num == self.m_metadata.seq_num and dft.header.data_type == self.m_metadata.data_type:
group = self.m_metadata.group_counter
else:
print(f"Missing group!")
if self.m_dft_0x0a_group == group:
#print(f"Second time, skipping")
return
self.m_dft_0x0a_group = group
m_config_dft_button_min_mag = 50000
# Now, we can process the frame to determine button state.
# First, collapse x and y, they convey the same information.
mag_4 = dft.x[4].magnitude + dft.y[4].magnitude;
mag_5 = dft.x[5].magnitude + dft.y[5].magnitude;
threshold = 2 * m_config_dft_button_min_mag;
print(f"mag_v: {mag_4} mag_5: {mag_5}")
if (mag_4 < threshold and mag_5 < threshold):
# Not enough signal, lets disable the button
self.button = False
return
# One of them is above the threshold, if 5 is higher than 4, button
# is held.
self.button = mag_4 < mag_5
print(f"Button: {self.button} mag_v: {mag_4} mag_5: {mag_5}")
if __name__ == "__main__":
import sys
z = iptsd_load(sys.argv[1])
for r in z:
print(r)