-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathexperiments.py
443 lines (354 loc) · 19.2 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import os
import csv
from collections import defaultdict
from glob import glob
from datetime import datetime
from multiprocessing import Manager, freeze_support, Process
import numpy as np
import scipy.stats
from scipy.special import psi, polygamma
from sklearn.metrics import roc_auc_score
from sklearn.svm import OneClassSVM
from sklearn.model_selection import ParameterGrid
from sklearn.externals.joblib import Parallel, delayed
from keras.models import Model, Input, Sequential
from keras.layers import Dense, Dropout
from keras.utils import to_categorical
from utils import load_cifar10, load_cats_vs_dogs, load_fashion_mnist, load_cifar100
from utils import save_roc_pr_curve_data, get_class_name_from_index, get_channels_axis
from transformations import Transformer
from models.wide_residual_network import create_wide_residual_network
from models.encoders_decoders import conv_encoder, conv_decoder
from models import dsebm, dagmm, adgan
import keras.backend as K
RESULTS_DIR = ''
def _transformations_experiment(dataset_load_fn, dataset_name, single_class_ind, gpu_q):
gpu_to_use = gpu_q.get()
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_to_use
(x_train, y_train), (x_test, y_test) = dataset_load_fn()
if dataset_name in ['cats-vs-dogs']:
transformer = Transformer(16, 16)
n, k = (16, 8)
else:
transformer = Transformer(8, 8)
n, k = (10, 4)
mdl = create_wide_residual_network(x_train.shape[1:], transformer.n_transforms, n, k)
mdl.compile('adam',
'categorical_crossentropy',
['acc'])
x_train_task = x_train[y_train.flatten() == single_class_ind]
transformations_inds = np.tile(np.arange(transformer.n_transforms), len(x_train_task))
x_train_task_transformed = transformer.transform_batch(np.repeat(x_train_task, transformer.n_transforms, axis=0),
transformations_inds)
batch_size = 128
mdl.fit(x=x_train_task_transformed, y=to_categorical(transformations_inds),
batch_size=batch_size, epochs=int(np.ceil(200/transformer.n_transforms))
)
#################################################################################################
# simplified normality score
#################################################################################################
# preds = np.zeros((len(x_test), transformer.n_transforms))
# for t in range(transformer.n_transforms):
# preds[:, t] = mdl.predict(transformer.transform_batch(x_test, [t] * len(x_test)),
# batch_size=batch_size)[:, t]
#
# labels = y_test.flatten() == single_class_ind
# scores = preds.mean(axis=-1)
#################################################################################################
def calc_approx_alpha_sum(observations):
N = len(observations)
f = np.mean(observations, axis=0)
return (N * (len(f) - 1) * (-psi(1))) / (
N * np.sum(f * np.log(f)) - np.sum(f * np.sum(np.log(observations), axis=0)))
def inv_psi(y, iters=5):
# initial estimate
cond = y >= -2.22
x = cond * (np.exp(y) + 0.5) + (1 - cond) * -1 / (y - psi(1))
for _ in range(iters):
x = x - (psi(x) - y) / polygamma(1, x)
return x
def fixed_point_dirichlet_mle(alpha_init, log_p_hat, max_iter=1000):
alpha_new = alpha_old = alpha_init
for _ in range(max_iter):
alpha_new = inv_psi(psi(np.sum(alpha_old)) + log_p_hat)
if np.sqrt(np.sum((alpha_old - alpha_new) ** 2)) < 1e-9:
break
alpha_old = alpha_new
return alpha_new
def dirichlet_normality_score(alpha, p):
return np.sum((alpha - 1) * np.log(p), axis=-1)
scores = np.zeros((len(x_test),))
observed_data = x_train_task
for t_ind in range(transformer.n_transforms):
observed_dirichlet = mdl.predict(transformer.transform_batch(observed_data, [t_ind] * len(observed_data)),
batch_size=1024)
log_p_hat_train = np.log(observed_dirichlet).mean(axis=0)
alpha_sum_approx = calc_approx_alpha_sum(observed_dirichlet)
alpha_0 = observed_dirichlet.mean(axis=0) * alpha_sum_approx
mle_alpha_t = fixed_point_dirichlet_mle(alpha_0, log_p_hat_train)
x_test_p = mdl.predict(transformer.transform_batch(x_test, [t_ind] * len(x_test)),
batch_size=1024)
scores += dirichlet_normality_score(mle_alpha_t, x_test_p)
scores /= transformer.n_transforms
labels = y_test.flatten() == single_class_ind
res_file_name = '{}_transformations_{}_{}.npz'.format(dataset_name,
get_class_name_from_index(single_class_ind, dataset_name),
datetime.now().strftime('%Y-%m-%d-%H%M'))
res_file_path = os.path.join(RESULTS_DIR, dataset_name, res_file_name)
save_roc_pr_curve_data(scores, labels, res_file_path)
mdl_weights_name = '{}_transformations_{}_{}_weights.h5'.format(dataset_name,
get_class_name_from_index(single_class_ind, dataset_name),
datetime.now().strftime('%Y-%m-%d-%H%M'))
mdl_weights_path = os.path.join(RESULTS_DIR, dataset_name, mdl_weights_name)
mdl.save_weights(mdl_weights_path)
gpu_q.put(gpu_to_use)
def _train_ocsvm_and_score(params, xtrain, test_labels, xtest):
return roc_auc_score(test_labels, OneClassSVM(**params).fit(xtrain).decision_function(xtest))
def _raw_ocsvm_experiment(dataset_load_fn, dataset_name, single_class_ind):
(x_train, y_train), (x_test, y_test) = dataset_load_fn()
x_train = x_train.reshape((len(x_train), -1))
x_test = x_test.reshape((len(x_test), -1))
x_train_task = x_train[y_train.flatten() == single_class_ind]
if dataset_name in ['cats-vs-dogs']: # OC-SVM is quadratic on the number of examples, so subsample training set
subsample_inds = np.random.choice(len(x_train_task), 5000, replace=False)
x_train_task = x_train_task[subsample_inds]
pg = ParameterGrid({'nu': np.linspace(0.1, 0.9, num=9),
'gamma': np.logspace(-7, 2, num=10, base=2)})
results = Parallel(n_jobs=6)(
delayed(_train_ocsvm_and_score)(d, x_train_task, y_test.flatten() == single_class_ind, x_test)
for d in pg)
best_params, best_auc_score = max(zip(pg, results), key=lambda t: t[-1])
best_ocsvm = OneClassSVM(**best_params).fit(x_train_task)
scores = best_ocsvm.decision_function(x_test)
labels = y_test.flatten() == single_class_ind
res_file_name = '{}_raw-oc-svm_{}_{}.npz'.format(dataset_name,
get_class_name_from_index(single_class_ind, dataset_name),
datetime.now().strftime('%Y-%m-%d-%H%M'))
res_file_path = os.path.join(RESULTS_DIR, dataset_name, res_file_name)
save_roc_pr_curve_data(scores, labels, res_file_path)
def _cae_ocsvm_experiment(dataset_load_fn, dataset_name, single_class_ind, gpu_q):
gpu_to_use = gpu_q.get()
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_to_use
(x_train, y_train), (x_test, y_test) = dataset_load_fn()
n_channels = x_train.shape[get_channels_axis()]
input_side = x_train.shape[2] # channel side will always be at shape[2]
enc = conv_encoder(input_side, n_channels)
dec = conv_decoder(input_side, n_channels)
x_in = Input(shape=x_train.shape[1:])
x_rec = dec(enc(x_in))
cae = Model(x_in, x_rec)
cae.compile('adam', 'mse')
x_train_task = x_train[y_train.flatten() == single_class_ind]
x_test_task = x_test[y_test.flatten() == single_class_ind] # This is just for visual monitoring
cae.fit(x=x_train_task, y=x_train_task, batch_size=128, epochs=200, validation_data=(x_test_task, x_test_task))
x_train_task_rep = enc.predict(x_train_task, batch_size=128)
if dataset_name in ['cats-vs-dogs']: # OC-SVM is quadratic on the number of examples, so subsample training set
subsample_inds = np.random.choice(len(x_train_task_rep), 2500, replace=False)
x_train_task_rep = x_train_task_rep[subsample_inds]
x_test_rep = enc.predict(x_test, batch_size=128)
pg = ParameterGrid({'nu': np.linspace(0.1, 0.9, num=9),
'gamma': np.logspace(-7, 2, num=10, base=2)})
results = Parallel(n_jobs=6)(
delayed(_train_ocsvm_and_score)(d, x_train_task_rep, y_test.flatten() == single_class_ind, x_test_rep)
for d in pg)
best_params, best_auc_score = max(zip(pg, results), key=lambda t: t[-1])
print(best_params)
best_ocsvm = OneClassSVM(**best_params).fit(x_train_task_rep)
scores = best_ocsvm.decision_function(x_test_rep)
labels = y_test.flatten() == single_class_ind
res_file_name = '{}_cae-oc-svm_{}_{}.npz'.format(dataset_name,
get_class_name_from_index(single_class_ind, dataset_name),
datetime.now().strftime('%Y-%m-%d-%H%M'))
res_file_path = os.path.join(RESULTS_DIR, dataset_name, res_file_name)
save_roc_pr_curve_data(scores, labels, res_file_path)
gpu_q.put(gpu_to_use)
def _dsebm_experiment(dataset_load_fn, dataset_name, single_class_ind, gpu_q):
gpu_to_use = gpu_q.get()
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_to_use
(x_train, y_train), (x_test, y_test) = dataset_load_fn()
n_channels = x_train.shape[get_channels_axis()]
input_side = x_train.shape[2] # image side will always be at shape[2]
encoder_mdl = conv_encoder(input_side, n_channels, representation_activation='relu')
energy_mdl = dsebm.create_energy_model(encoder_mdl)
reconstruction_mdl = dsebm.create_reconstruction_model(energy_mdl)
# optimization parameters
batch_size = 128
epochs = 200
reconstruction_mdl.compile('adam', 'mse')
x_train_task = x_train[y_train.flatten() == single_class_ind]
x_test_task = x_test[y_test.flatten() == single_class_ind] # This is just for visual monitoring
reconstruction_mdl.fit(x=x_train_task, y=x_train_task,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test_task, x_test_task))
scores = -energy_mdl.predict(x_test, batch_size)
labels = y_test.flatten() == single_class_ind
res_file_name = '{}_dsebm_{}_{}.npz'.format(dataset_name,
get_class_name_from_index(single_class_ind, dataset_name),
datetime.now().strftime('%Y-%m-%d-%H%M'))
res_file_path = os.path.join(RESULTS_DIR, dataset_name, res_file_name)
save_roc_pr_curve_data(scores, labels, res_file_path)
gpu_q.put(gpu_to_use)
def _dagmm_experiment(dataset_load_fn, dataset_name, single_class_ind, gpu_q):
gpu_to_use = gpu_q.get()
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_to_use
(x_train, y_train), (x_test, y_test) = dataset_load_fn()
n_channels = x_train.shape[get_channels_axis()]
input_side = x_train.shape[2] # image side will always be at shape[2]
enc = conv_encoder(input_side, n_channels, representation_dim=5,
representation_activation='linear')
dec = conv_decoder(input_side, n_channels=n_channels, representation_dim=enc.output_shape[-1])
n_components = 3
estimation = Sequential([Dense(64, activation='tanh', input_dim=enc.output_shape[-1] + 2), Dropout(0.5),
Dense(10, activation='tanh'), Dropout(0.5),
Dense(n_components, activation='softmax')]
)
batch_size = 256
epochs = 200
lambda_diag = 0.0005
lambda_energy = 0.01
dagmm_mdl = dagmm.create_dagmm_model(enc, dec, estimation, lambda_diag)
dagmm_mdl.compile('adam', ['mse', lambda y_true, y_pred: lambda_energy*y_pred])
x_train_task = x_train[y_train.flatten() == single_class_ind]
x_test_task = x_test[y_test.flatten() == single_class_ind] # This is just for visual monitoring
dagmm_mdl.fit(x=x_train_task, y=[x_train_task, np.zeros((len(x_train_task), 1))], # second y is dummy
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test_task, [x_test_task, np.zeros((len(x_test_task), 1))]),
# verbose=0
)
energy_mdl = Model(dagmm_mdl.input, dagmm_mdl.output[-1])
scores = -energy_mdl.predict(x_test, batch_size)
scores = scores.flatten()
if not np.all(np.isfinite(scores)):
min_finite = np.min(scores[np.isfinite(scores)])
scores[~np.isfinite(scores)] = min_finite - 1
labels = y_test.flatten() == single_class_ind
res_file_name = '{}_dagmm_{}_{}.npz'.format(dataset_name,
get_class_name_from_index(single_class_ind, dataset_name),
datetime.now().strftime('%Y-%m-%d-%H%M'))
res_file_path = os.path.join(RESULTS_DIR, dataset_name, res_file_name)
save_roc_pr_curve_data(scores, labels, res_file_path)
gpu_q.put(gpu_to_use)
def _adgan_experiment(dataset_load_fn, dataset_name, single_class_ind, gpu_q):
gpu_to_use = gpu_q.get()
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_to_use
(x_train, y_train), (x_test, y_test) = dataset_load_fn()
if len(x_test) > 5000:
# subsample x_test due to runtime complexity
chosen_inds = np.random.choice(len(x_test), 5000, replace=False)
x_test = x_test[chosen_inds]
y_test = y_test[chosen_inds]
n_channels = x_train.shape[get_channels_axis()]
input_side = x_train.shape[2] # image side will always be at shape[2]
critic = conv_encoder(input_side, n_channels, representation_dim=1,
representation_activation='linear')
noise_size = 256
generator = conv_decoder(input_side, n_channels=n_channels, representation_dim=noise_size)
def prior_gen(b_size):
return np.random.normal(size=(b_size, noise_size))
batch_size = 128
epochs = 100
x_train_task = x_train[y_train.flatten() == single_class_ind]
def data_gen(b_size):
chosen_inds = np.random.choice(len(x_train_task), b_size, replace=False)
return x_train_task[chosen_inds]
adgan.train_wgan_with_grad_penalty(prior_gen, generator, data_gen, critic, batch_size, epochs, grad_pen_coef=20)
scores = adgan.scores_from_adgan_generator(x_test, prior_gen, generator)
labels = y_test.flatten() == single_class_ind
res_file_name = '{}_adgan_{}_{}.npz'.format(dataset_name,
get_class_name_from_index(single_class_ind, dataset_name),
datetime.now().strftime('%Y-%m-%d-%H%M'))
res_file_path = os.path.join(RESULTS_DIR, dataset_name, res_file_name)
save_roc_pr_curve_data(scores, labels, res_file_path)
gpu_q.put(gpu_to_use)
def run_experiments(load_dataset_fn, dataset_name, q, n_classes):
# CAE OC-SVM
processes = [Process(target=_cae_ocsvm_experiment,
args=(load_dataset_fn, dataset_name, c, q)) for c in range(n_classes)]
for p in processes:
p.start()
p.join()
# Raw OC-SVM
for c in range(n_classes):
_raw_ocsvm_experiment(load_dataset_fn, dataset_name, c)
n_runs = 5
# Transformations
for _ in range(n_runs):
processes = [Process(target=_transformations_experiment,
args=(load_dataset_fn, dataset_name, c, q)) for c in range(n_classes)]
if dataset_name in ['cats-vs-dogs']: # Self-labeled set is memory consuming
for p in processes:
p.start()
p.join()
else:
for p in processes:
p.start()
for p in processes:
p.join()
# DSEBM
for _ in range(n_runs):
processes = [Process(target=_dsebm_experiment,
args=(load_dataset_fn, dataset_name, c, q)) for c in range(n_classes)]
for p in processes:
p.start()
for p in processes:
p.join()
# DAGMM
for _ in range(n_runs):
processes = [Process(target=_dagmm_experiment,
args=(load_dataset_fn, dataset_name, c, q)) for c in range(n_classes)]
for p in processes:
p.start()
for p in processes:
p.join()
# ADGAN
processes = [Process(target=_adgan_experiment,
args=(load_dataset_fn, dataset_name, c, q)) for c in range(n_classes)]
for p in processes:
p.start()
for p in processes:
p.join()
def create_auc_table(metric='roc_auc'):
file_path = glob(os.path.join(RESULTS_DIR, '*', '*.npz'))
results = defaultdict(lambda: defaultdict(lambda: defaultdict(list)))
methods = set()
for p in file_path:
_, f_name = os.path.split(p)
dataset_name, method, single_class_name = f_name.split(sep='_')[:3]
methods.add(method)
npz = np.load(p)
roc_auc = npz[metric]
results[dataset_name][single_class_name][method].append(roc_auc)
for ds_name in results:
for sc_name in results[ds_name]:
for method_name in results[ds_name][sc_name]:
roc_aucs = results[ds_name][sc_name][method_name]
results[ds_name][sc_name][method_name] = [np.mean(roc_aucs),
0 if len(roc_aucs) == 1 else scipy.stats.sem(np.array(roc_aucs))
]
with open('results-{}.csv'.format(metric), 'w') as csvfile:
fieldnames = ['dataset', 'single class name'] + sorted(list(methods))
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for ds_name in sorted(results.keys()):
for sc_name in sorted(results[ds_name].keys()):
row_dict = {'dataset': ds_name, 'single class name': sc_name}
row_dict.update({method_name: '{:.3f} ({:.3f})'.format(*results[ds_name][sc_name][method_name])
for method_name in results[ds_name][sc_name]})
writer.writerow(row_dict)
if __name__ == '__main__':
freeze_support()
N_GPUS = 2
man = Manager()
q = man.Queue(N_GPUS)
for g in range(N_GPUS):
q.put(str(g))
experiments_list = [
(load_cifar10, 'cifar10', 10),
(load_cifar100, 'cifar100', 20),
(load_fashion_mnist, 'fashion-mnist', 10),
(load_cats_vs_dogs, 'cats-vs-dogs', 2),
]
for data_load_fn, dataset_name, n_classes in experiments_list:
run_experiments(data_load_fn, dataset_name, q, n_classes)