-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
citations.bib
449 lines (396 loc) · 14.5 KB
/
citations.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
@inproceedings{GoogleTensorFlow,
title={Tensorflow: A system for large-scale machine learning},
author={Abadi, Mart{\'\i}n and Barham, Paul and Chen, Jianmin and Chen, Zhifeng and Davis, Andy and Dean, Jeffrey and Devin, Matthieu and Ghemawat, Sanjay and Irving, Geoffrey and Isard, Michael and others},
booktitle={12th $\{$USENIX$\}$ Symposium on Operating Systems Design and Implementation ($\{$OSDI$\}$ 16)},
pages={265--283},
year={2016}
}
@misc{franccois2017deep,
title={Deep learning with Python},
author={Fran{\c{c}}ois, Chollet},
year={2017},
publisher={Manning Publications Company}
}
@inproceedings{glorot2010understanding,
title={Understanding the difficulty of training deep feedforward neural networks},
author={Glorot, Xavier and Bengio, Yoshua},
booktitle={Proceedings of the thirteenth international conference on artificial intelligence and statistics},
pages={249--256},
year={2010}
}
@inproceedings{glorot2011deep,
title={Deep sparse rectifier neural networks},
author={Glorot, Xavier and Bordes, Antoine and Bengio, Yoshua},
booktitle={Proceedings of the fourteenth international conference on artificial intelligence and statistics},
pages={315--323},
year={2011}
}
@article{lecun2015deep,
title={Deep learning},
author={LeCun, Yann and Bengio, Yoshua and Hinton, Geoffrey},
journal={nature},
volume={521},
number={7553},
pages={436--444},
year={2015},
publisher={Nature Publishing Group}
}
@book{goodfellow2016deep,
title={Deep learning},
author={Goodfellow, Ian and Bengio, Yoshua and Courville, Aaron},
year={2016},
publisher={MIT press}
}
@article{hinton2006fast,
title={A fast learning algorithm for deep belief nets},
author={Hinton, Geoffrey E and Osindero, Simon and Teh, Yee-Whye},
journal={Neural computation},
volume={18},
number={7},
pages={1527--1554},
year={2006},
publisher={MIT Press}
}
@article{hochreiter1997long,
title={Long short-term memory},
author={Hochreiter, Sepp and Schmidhuber, J{\"u}rgen},
journal={Neural computation},
volume={9},
number={8},
pages={1735--1780},
year={1997},
publisher={MIT Press}
}
@article{kingma2014adam,
title={Adam: A method for stochastic optimization},
author={Kingma, Diederik P and Ba, Jimmy},
journal={arXiv preprint arXiv:1412.6980},
year={2014}
}
@article{lecun1995convolutional,
title={Convolutional networks for images, speech, and time series},
author={LeCun, Yann and Bengio, Yoshua and others},
journal={The handbook of brain theory and neural networks},
volume={3361},
number={10},
pages={1995},
year={1995}
}
@article{fukushima1980neocognitron,
title={Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position},
author={Fukushima, Kunihiko},
journal={Biological cybernetics},
volume={36},
number={4},
pages={193--202},
year={1980},
publisher={Springer}
}
@article{mcculloch1943logical,
title={A logical calculus of the ideas immanent in nervous activity},
author={McCulloch, Warren S and Pitts, Walter},
journal={The bulletin of mathematical biophysics},
volume={5},
number={4},
pages={115--133},
year={1943},
publisher={Springer}
}
@inproceedings{nair2010rectified,
title={Rectified linear units improve restricted boltzmann machines},
author={Nair, Vinod and Hinton, Geoffrey E},
booktitle={Proceedings of the 27th international conference on machine learning (ICML-10)},
pages={807--814},
year={2010}
}
@article{srivastava2014dropout,
title={Dropout: a simple way to prevent neural networks from overfitting},
author={Srivastava, Nitish and Hinton, Geoffrey and Krizhevsky, Alex and Sutskever, Ilya and Salakhutdinov, Ruslan},
journal={The journal of machine learning research},
volume={15},
number={1},
pages={1929--1958},
year={2014},
publisher={JMLR. org}
}
@inproceedings{bui2018neural,
title={Neural graph learning: Training neural networks using graphs},
author={Bui, Thang D and Ravi, Sujith and Ramavajjala, Vivek},
booktitle={Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining},
pages={64--71},
year={2018},
organization={ACM}
}
@inproceedings{sabour2017dynamic,
title={Dynamic routing between capsules},
author={Sabour, Sara and Frosst, Nicholas and Hinton, Geoffrey E},
booktitle={Advances in neural information processing systems},
pages={3856--3866},
year={2017}
}
@article{devlin2018bert,
title={Bert: Pre-training of deep bidirectional transformers for language understanding},
author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
journal={arXiv preprint arXiv:1810.04805},
year={2018}
}
@article{wang2018glue,
title={Glue: A multi-task benchmark and analysis platform for natural language understanding},
author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},
journal={arXiv preprint arXiv:1804.07461},
year={2018}
}
@article{williams2017broad,
title={A broad-coverage challenge corpus for sentence understanding through inference},
author={Williams, Adina and Nangia, Nikita and Bowman, Samuel R},
journal={arXiv preprint arXiv:1704.05426},
year={2017}
}
@inproceedings{redmon2016you,
title={You only look once: Unified, real-time object detection},
author={Redmon, Joseph and Divvala, Santosh and Girshick, Ross and Farhadi, Ali},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={779--788},
year={2016}
}
@inproceedings{lin2014microsoft,
title={Microsoft coco: Common objects in context},
author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
booktitle={European conference on computer vision},
pages={740--755},
year={2014},
organization={Springer}
}
@inproceedings{goodfellow2014generative,
title={Generative adversarial nets},
author={Goodfellow, Ian and Pouget-Abadie, Jean and Mirza, Mehdi and Xu, Bing and Warde-Farley, David and Ozair, Sherjil and Courville, Aaron and Bengio, Yoshua},
booktitle={Advances in neural information processing systems},
pages={2672--2680},
year={2014}
}
@article{radford2015unsupervised,
title={Unsupervised representation learning with deep convolutional generative adversarial networks},
author={Radford, Alec and Metz, Luke and Chintala, Soumith},
journal={arXiv preprint arXiv:1511.06434},
year={2015}
}
@inproceedings{karras2019style,
title={A style-based generator architecture for generative adversarial networks},
author={Karras, Tero and Laine, Samuli and Aila, Timo},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={4401--4410},
year={2019}
}
@article{karras2019analyzing,
title={Analyzing and improving the image quality of stylegan},
author={Karras, Tero and Laine, Samuli and Aittala, Miika and Hellsten, Janne and Lehtinen, Jaakko and Aila, Timo},
journal={arXiv preprint arXiv:1912.04958},
year={2019}
}
@article{karras2020training,
title={Training generative adversarial networks with limited data},
author={Karras, Tero and Aittala, Miika and Hellsten, Janne and Laine, Samuli and Lehtinen, Jaakko and Aila, Timo},
journal={Advances in Neural Information Processing Systems},
volume={33},
pages={12104--12114},
year={2020}
}
@article{odena2016semi,
title={Semi-supervised learning with generative adversarial networks},
author={Odena, Augustus},
journal={arXiv preprint arXiv:1606.01583},
year={2016}
}
@article{mikolov2013efficient,
title={Efficient estimation of word representations in vector space},
author={Mikolov, Tomas and Chen, Kai and Corrado, Greg and Dean, Jeffrey},
journal={arXiv preprint arXiv:1301.3781},
year={2013}
}
@article{barto1983neuronlike,
title={Neuronlike adaptive elements that can solve difficult learning control problems},
author={Barto, Andrew G and Sutton, Richard S and Anderson, Charles W},
journal={IEEE transactions on systems, man, and cybernetics},
number={5},
pages={834--846},
year={1983},
publisher={IEEE}
}
@article{lillicrap2015continuous,
title={Continuous control with deep reinforcement learning},
author={Lillicrap, Timothy P and Hunt, Jonathan J and Pritzel, Alexander and Heess, Nicolas and Erez, Tom and Tassa, Yuval and Silver, David and Wierstra, Daan},
journal={arXiv preprint arXiv:1509.02971},
year={2015}
}
@article{weston2015towards,
title={Towards ai-complete question answering: A set of prerequisite toy tasks},
author={Weston, Jason and Bordes, Antoine and Chopra, Sumit and Rush, Alexander M and van Merri{\"e}nboer, Bart and Joulin, Armand and Mikolov, Tomas},
journal={arXiv preprint arXiv:1502.05698},
year={2015}
}
@inproceedings{sukhbaatar2015end,
title={End-to-end memory networks},
author={Sukhbaatar, Sainbayar and Weston, Jason and Fergus, Rob and others},
booktitle={Advances in neural information processing systems},
pages={2440--2448},
year={2015}
}
@phdthesis{karpathy2016connecting,
title={Connecting images and natural language},
author={Karpathy, Andrej},
year={2016},
school={Ph. D. thesis, Stanford University}
}
@inproceedings{deng2009imagenet,
title={Imagenet: A large-scale hierarchical image database},
author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li},
booktitle={2009 IEEE conference on computer vision and pattern recognition},
pages={248--255},
year={2009},
organization={Ieee}
}
@article{cer2018universal,
title={Universal sentence encoder},
author={Cer, Daniel and Yang, Yinfei and Kong, Sheng-yi and Hua, Nan and Limtiaco, Nicole and John, Rhomni St and Constant, Noah and Guajardo-Cespedes, Mario and Yuan, Steve and Tar, Chris and others},
journal={arXiv preprint arXiv:1803.11175},
year={2018}
}
@article{howard2018universal,
title={Universal language model fine-tuning for text classification},
author={Howard, Jeremy and Ruder, Sebastian},
journal={arXiv preprint arXiv:1801.06146},
year={2018}
}
@article{olden2004accurate,
title={An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data},
author={Olden, Julian D and Joy, Michael K and Death, Russell G},
journal={Ecological modelling},
volume={178},
number={3-4},
pages={389--397},
year={2004},
publisher={Elsevier}
}
@inproceedings{heaton2017early,
title={Early stabilizing feature importance for TensorFlow deep neural networks},
author={Heaton, Jeff and McElwee, Steven and Fraley, James and Cannady, James},
booktitle={2017 International Joint Conference on Neural Networks (IJCNN)},
pages={4618--4624},
year={2017},
organization={IEEE}
}
@article{heaton2015encog,
title={Encog: Library of interchangeable machine learning models for java and c\#},
author={Heaton, Jeff},
journal={arXiv preprint arXiv:1506.04776},
year={2015}
}
@article{heaton2017automated,
title={Automated Feature Engineering for Deep Neural Networks with Genetic Programming},
author={Heaton, Jeff T},
year={2017}
}
@article{heaton2019evolving,
title={Evolving continuous cellular automata for aesthetic objectives},
author={Heaton, Jeff},
journal={Genetic Programming and Evolvable Machines},
volume={20},
number={1},
pages={93--125},
year={2019},
publisher={Springer}
}
@article{breiman2001random,
title={Random forests},
author={Breiman, Leo},
journal={Machine learning},
volume={45},
number={1},
pages={5--32},
year={2001},
publisher={Springer}
}
@inproceedings{ng2004feature,
title={Feature selection, L 1 vs. L 2 regularization, and rotational invariance},
author={Ng, Andrew Y},
booktitle={Proceedings of the twenty-first international conference on Machine learning},
pages={78},
year={2004}
}
@inproceedings{snoek2012practical,
title={Practical bayesian optimization of machine learning algorithms},
author={Snoek, Jasper and Larochelle, Hugo and Adams, Ryan P},
booktitle={Advances in neural information processing systems},
pages={2951--2959},
year={2012}
}
@inproceedings{zhu2021tph,
title={TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-captured Scenarios},
author={Zhu, Xingkui and Lyu, Shuchang and Wang, Xu and Zhao, Qi},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={2778--2788},
year={2021}
}
@article{ashrapov2020tabular,
title={Tabular GANs for uneven distribution},
author={Ashrapov, Insaf},
journal={arXiv preprint arXiv:2010.00638},
year={2020}
}
@inproceedings{gatys2016image,
title={Image style transfer using convolutional neural networks},
author={Gatys, Leon A and Ecker, Alexander S and Bethge, Matthias},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={2414--2423},
year={2016}
}
@article{simonyan2014very,
title={Very deep convolutional networks for large-scale image recognition},
author={Simonyan, Karen and Zisserman, Andrew},
journal={arXiv preprint arXiv:1409.1556},
year={2014}
}
@article{vaswani2017attention,
title={Attention is all you need},
author={Vaswani, Ashish and Shazeer, Noam and Parmar, Niki and Uszkoreit, Jakob and Jones, Llion and Gomez, Aidan N and Kaiser, {\L}ukasz and Polosukhin, Illia},
journal={Advances in neural information processing systems},
volume={30},
year={2017}
}
@inproceedings{saravia2018carer,
title={Carer: Contextualized affect representations for emotion recognition},
author={Saravia, Elvis and Liu, Hsien-Chi Toby and Huang, Yen-Hao and Wu, Junlin and Chen, Yi-Shin},
booktitle={Proceedings of the 2018 conference on empirical methods in natural language processing},
pages={3687--3697},
year={2018}
}
@article{stevens1946theory,
title={On the theory of scales of measurement},
author={Stevens, Stanley Smith},
journal={Science},
volume={103},
number={2684},
pages={677--680},
year={1946},
publisher={American Association for the Advancement of Science}
}
@article{hornik1989multilayer,
title={Multilayer feedforward networks are universal approximators},
author={Hornik, Kurt and Stinchcombe, Maxwell and White, Halbert},
journal={Neural networks},
volume={2},
number={5},
pages={359--366},
year={1989},
publisher={Elsevier}
}
@article{rumelhart1986learning,
title={Learning representations by back-propagating errors},
author={Rumelhart, David E and Hinton, Geoffrey E and Williams, Ronald J},
journal={nature},
volume={323},
number={6088},
pages={533--536},
year={1986},
publisher={Nature Publishing Group}
}