-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathacc_test.py
171 lines (156 loc) · 4.92 KB
/
acc_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import json
import numpy as np
import sys
import pandas as pd
def read_json(p):
with open(p) as f:
data = json.loads(f.read())
return data
def count_acc(lst1,lst2):
c_1 =dict(zip(*np.unique(lst1, return_counts=True)))
c_2 =dict(zip(*np.unique(lst2, return_counts=True)))
acc = 0
for k,v in c_1.items():
acc += min(v,c_2.get(k,0))
return acc
def compare_data(y_pred_path,y_truth_path):
#y_pred_path = 'json_result/result_rectification_none.json'
y_pred = read_json(y_pred_path)
# y_truth_path = 'all_data_label.json'
y_truth = read_json(y_truth_path)
final_output = []
organized_y_pred = {}
for k,v in y_pred.items():
for side in ['L','R']:
if v[side]:
lst = []
for payload in v[side]:
freq = payload['frequency']
loss = payload['loss']
lst.append((freq,loss))
organized_y_pred[(k,side)] = lst
organized_y_truth = {}
for k,v in y_truth.items():
for side in ['L','R']:
if v[side]:
lst = []
for payload in v[side]:
freq = payload[0]
loss = payload[1]
lst.append((freq,loss))
organized_y_truth[(k,side)] = lst
#ALL ACC
ACC,TOL,REC = 0,0,0
for k,v in organized_y_pred.items():
if k not in organized_y_truth :
print(k)
continue
acc = len([x for x in v if x in organized_y_truth[k]])
tol = len(organized_y_truth[k])
rec = len(v)
ACC += acc
TOL += tol
REC += rec
final_output.append(
("All Labels",ACC/TOL,ACC/REC)
)
# print("All Labels")
# print(ACC,TOL,REC)
# print(ACC/TOL)
# print(ACC/REC)
#FREQ
ACC,TOL,REC = 0,0,0
for k,v in organized_y_pred.items():
if k not in organized_y_truth :
print(k)
continue
freq_t = [x[0] for x in organized_y_truth[k]]
freq_p = [x[0] for x in v]
#acc = len([x for x in v if x[0] in freq_t])
acc = count_acc(freq_p,freq_t)
# try:
# assert len(set(freq_p))==len(freq_p)
# except:
# print("W")
# print(freq_p)
# print("T")
# print(freq_t)
tol = len(organized_y_truth[k])
rec = len(v)
ACC += acc
TOL += tol
REC += rec
final_output.append(
("Frequency Labels",ACC/TOL,ACC/REC)
)
#Loss
ACC,TOL,REC = 0,0,0
for k,v in organized_y_pred.items():
if k not in organized_y_truth :
print(k)
continue
freq_t = [x[1] for x in organized_y_truth[k]]
freq_p = [x[1] for x in v]
#acc = len([x for x in v if x[0] in freq_t])
acc = count_acc(freq_p,freq_t)
# try:
# assert len(set(freq_p))==len(freq_p)
# except:
# print("W")
# print(freq_p)
# print("T")
# print(freq_t)
tol = len(organized_y_truth[k])
rec = len(v)
ACC += acc
TOL += tol
REC += rec
final_output.append(
("Loss Labels",ACC/TOL,ACC/REC)
)
# +-5
ACC,TOL,REC = 0,0,0
TOTAL_ERR = []
for k,v in organized_y_pred.items():
if k not in organized_y_truth :
print(k)
continue
freq_t = {x[0]:x[1] for x in organized_y_truth[k]}
freq_p = {x[0]:x[1] for x in v}
#acc = len([x for x in v if x[0] in freq_t])
acc = len([1 for k,l in freq_p.items() if abs(freq_t.get(k,-1000)-l)<=5 ])
t_err = [abs(freq_t.get(k,0)-l) for k,l in freq_p.items() if freq_t.get(k) is not None]
TOTAL_ERR.extend(list(t_err))
# try:
# assert len(set(freq_p))==len(freq_p)
# except:
# print("W")
# print(freq_p)
# print("T")
# print(freq_t)
tol = len(organized_y_truth[k])
rec = len(v)
ACC += acc
TOL += tol
REC += rec
final_output.append(
("+-5 Loss Labels",ACC/TOL,ACC/REC)
)
return final_output
def main():
ALL_PHOTO_PATH = 'annotations/camera_photo_freq_loss.json'
SCANNED_IMG_PATH = 'annotations/scanned_image_freq_loss.json'
true_pred_match = [
[ALL_PHOTO_PATH,'json_result/result_baseline_rectification_none.json'],
[ALL_PHOTO_PATH,'json_result/result_baseline_rectification_vp.json'],
[ALL_PHOTO_PATH,'json_result/result_baseline_rectification_mask.json'],
[SCANNED_IMG_PATH,'json_result/result_baseline_scanned.json'],
]
for y_truth,y_pred in true_pred_match:
res = compare_data(y_pred,y_truth)
df = pd.DataFrame(res)
df.columns = ['enrty','recall','precision']
print(f"Summary of {y_pred}")
print(df)
if __name__ == '__main__':
main()