-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest3.py
82 lines (61 loc) · 2.25 KB
/
test3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
import matplotlib.pyplot as plt # pour plot functons
plt.switch_backend('tkAgg') # necessary for OS SUSE 13.1 version,
# otherwise, the plt.show() function will not display any window
import scipy as sp
from scipy import sparse
from scipy.sparse import linalg
# Parametres du probleme
lg = 10 # intervalle en x=[-lg,lg]
dx = 0.1 # dx = pas d'espace
cfl = 0.49 # cfl = dt/dx^2
dt = dx*dx*cfl # dt = pas de temps
Tfinal = 0.5 # Temps final souhaite
nx = 2*lg/dx + 1 # nx = nombre d'intervals
imax=10
#print(int(nx))
x = np.linspace(-10.,10.,2*imax+1)
# Initialize u0
u0 = np.zeros(len(x))
#print(len(u0))
# Set specific u0 values (same as in the scilab program)
for k in range (len(x)):
if (1.0 - x[k]**2) < 0:
u0[k] = 0
else:
u0[k] = 1.0 - x[k]**2 # donnee initiale
# Initialize u by the initial data u0
uimp = u0.copy() # il faut faire une copie sinon on va changer u0 en changeant u
uexp = u0.copy()
# Construction de la matrice (creuse) pour le schema explicite
# u(-10,t)=u(10,t)=0 on peut donc enlever ces deux coordonnees du systeme
#u_j^{n+1}=nu*cfl*u_{j-1}^n+(1-2*nu*cfl)u_j^n+nu*cfl*u_{j+1}^n
Aexp=sp.sparse.diags([cfl, 1-2*cfl, cfl], [-1, 0, 1], shape=(nx-2, nx-2))
# Construction de la matrice (creuse) pour le schema implicite
#-nu*cfl*u_{j-1}^{n+1}+(1+2*nu*cfl)u_j^{n+1}-nu*cfl*u_{j+1}^{n+1}=u_j^n
Aimp=sp.sparse.diags([-cfl, 1+2*cfl, -cfl], [-1, 0, 1], shape=(nx-2, nx-2))
# Sanity check to see how matrix looks like
#print(Aexp.toarray())
#print(Aimp.toarray())
# Factorisation LU de la matrice Aimp
AimpFact = sp.sparse.linalg.factorized(Aimp)
# Nombre de pas de temps effectues
nt = int(Tfinal/dt)
Tfinal = nt*dt # on corrige le temps final (si Tfinal/dt n'est pas entier)
x = np.linspace(-imax,imax,2*imax+1)
# Print solution
for n in range(1,nt+1):
# Solution 1: Solve explicit system
uexp[1:-1]=Aexp*uexp[1:-1]
# Solution 2: schema implicite
# uimp = sp.sparse.linalg.spsolve(Aimp,uimp)
uimp[1:-1]=AimpFact(uimp[1:-1])
# Print solution
if n%5 == 0:
plt.figure(2)
plt.clf()
plt.plot(x,u0,'b',x,uexp,'r')
plt.xlabel('$x$')
plt.title('Schema explicite')
plt.pause(0.1)
plt.show()