forked from openai/openai-go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
finetuningjob.go
750 lines (660 loc) · 28.4 KB
/
finetuningjob.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
// File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
package openai
import (
"context"
"errors"
"fmt"
"net/http"
"net/url"
"reflect"
"github.com/openai/openai-go/internal/apijson"
"github.com/openai/openai-go/internal/apiquery"
"github.com/openai/openai-go/internal/pagination"
"github.com/openai/openai-go/internal/param"
"github.com/openai/openai-go/internal/requestconfig"
"github.com/openai/openai-go/option"
"github.com/openai/openai-go/shared"
"github.com/tidwall/gjson"
)
// FineTuningJobService contains methods and other services that help with
// interacting with the openai API.
//
// Note, unlike clients, this service does not read variables from the environment
// automatically. You should not instantiate this service directly, and instead use
// the [NewFineTuningJobService] method instead.
type FineTuningJobService struct {
Options []option.RequestOption
Checkpoints *FineTuningJobCheckpointService
}
// NewFineTuningJobService generates a new service that applies the given options
// to each request. These options are applied after the parent client's options (if
// there is one), and before any request-specific options.
func NewFineTuningJobService(opts ...option.RequestOption) (r *FineTuningJobService) {
r = &FineTuningJobService{}
r.Options = opts
r.Checkpoints = NewFineTuningJobCheckpointService(opts...)
return
}
// Creates a fine-tuning job which begins the process of creating a new model from
// a given dataset.
//
// Response includes details of the enqueued job including job status and the name
// of the fine-tuned models once complete.
//
// [Learn more about fine-tuning](https://platform.openai.com/docs/guides/fine-tuning)
func (r *FineTuningJobService) New(ctx context.Context, body FineTuningJobNewParams, opts ...option.RequestOption) (res *FineTuningJob, err error) {
opts = append(r.Options[:], opts...)
path := "fine_tuning/jobs"
err = requestconfig.ExecuteNewRequest(ctx, http.MethodPost, path, body, &res, opts...)
return
}
// Get info about a fine-tuning job.
//
// [Learn more about fine-tuning](https://platform.openai.com/docs/guides/fine-tuning)
func (r *FineTuningJobService) Get(ctx context.Context, fineTuningJobID string, opts ...option.RequestOption) (res *FineTuningJob, err error) {
opts = append(r.Options[:], opts...)
if fineTuningJobID == "" {
err = errors.New("missing required fine_tuning_job_id parameter")
return
}
path := fmt.Sprintf("fine_tuning/jobs/%s", fineTuningJobID)
err = requestconfig.ExecuteNewRequest(ctx, http.MethodGet, path, nil, &res, opts...)
return
}
// List your organization's fine-tuning jobs
func (r *FineTuningJobService) List(ctx context.Context, query FineTuningJobListParams, opts ...option.RequestOption) (res *pagination.CursorPage[FineTuningJob], err error) {
var raw *http.Response
opts = append(r.Options[:], opts...)
opts = append([]option.RequestOption{option.WithResponseInto(&raw)}, opts...)
path := "fine_tuning/jobs"
cfg, err := requestconfig.NewRequestConfig(ctx, http.MethodGet, path, query, &res, opts...)
if err != nil {
return nil, err
}
err = cfg.Execute()
if err != nil {
return nil, err
}
res.SetPageConfig(cfg, raw)
return res, nil
}
// List your organization's fine-tuning jobs
func (r *FineTuningJobService) ListAutoPaging(ctx context.Context, query FineTuningJobListParams, opts ...option.RequestOption) *pagination.CursorPageAutoPager[FineTuningJob] {
return pagination.NewCursorPageAutoPager(r.List(ctx, query, opts...))
}
// Immediately cancel a fine-tune job.
func (r *FineTuningJobService) Cancel(ctx context.Context, fineTuningJobID string, opts ...option.RequestOption) (res *FineTuningJob, err error) {
opts = append(r.Options[:], opts...)
if fineTuningJobID == "" {
err = errors.New("missing required fine_tuning_job_id parameter")
return
}
path := fmt.Sprintf("fine_tuning/jobs/%s/cancel", fineTuningJobID)
err = requestconfig.ExecuteNewRequest(ctx, http.MethodPost, path, nil, &res, opts...)
return
}
// Get status updates for a fine-tuning job.
func (r *FineTuningJobService) ListEvents(ctx context.Context, fineTuningJobID string, query FineTuningJobListEventsParams, opts ...option.RequestOption) (res *pagination.CursorPage[FineTuningJobEvent], err error) {
var raw *http.Response
opts = append(r.Options[:], opts...)
opts = append([]option.RequestOption{option.WithResponseInto(&raw)}, opts...)
if fineTuningJobID == "" {
err = errors.New("missing required fine_tuning_job_id parameter")
return
}
path := fmt.Sprintf("fine_tuning/jobs/%s/events", fineTuningJobID)
cfg, err := requestconfig.NewRequestConfig(ctx, http.MethodGet, path, query, &res, opts...)
if err != nil {
return nil, err
}
err = cfg.Execute()
if err != nil {
return nil, err
}
res.SetPageConfig(cfg, raw)
return res, nil
}
// Get status updates for a fine-tuning job.
func (r *FineTuningJobService) ListEventsAutoPaging(ctx context.Context, fineTuningJobID string, query FineTuningJobListEventsParams, opts ...option.RequestOption) *pagination.CursorPageAutoPager[FineTuningJobEvent] {
return pagination.NewCursorPageAutoPager(r.ListEvents(ctx, fineTuningJobID, query, opts...))
}
// The `fine_tuning.job` object represents a fine-tuning job that has been created
// through the API.
type FineTuningJob struct {
// The object identifier, which can be referenced in the API endpoints.
ID string `json:"id,required"`
// The Unix timestamp (in seconds) for when the fine-tuning job was created.
CreatedAt int64 `json:"created_at,required"`
// For fine-tuning jobs that have `failed`, this will contain more information on
// the cause of the failure.
Error FineTuningJobError `json:"error,required,nullable"`
// The name of the fine-tuned model that is being created. The value will be null
// if the fine-tuning job is still running.
FineTunedModel string `json:"fine_tuned_model,required,nullable"`
// The Unix timestamp (in seconds) for when the fine-tuning job was finished. The
// value will be null if the fine-tuning job is still running.
FinishedAt int64 `json:"finished_at,required,nullable"`
// The hyperparameters used for the fine-tuning job. See the
// [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning) for
// more details.
Hyperparameters FineTuningJobHyperparameters `json:"hyperparameters,required"`
// The base model that is being fine-tuned.
Model string `json:"model,required"`
// The object type, which is always "fine_tuning.job".
Object FineTuningJobObject `json:"object,required"`
// The organization that owns the fine-tuning job.
OrganizationID string `json:"organization_id,required"`
// The compiled results file ID(s) for the fine-tuning job. You can retrieve the
// results with the
// [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents).
ResultFiles []string `json:"result_files,required"`
// The seed used for the fine-tuning job.
Seed int64 `json:"seed,required"`
// The current status of the fine-tuning job, which can be either
// `validating_files`, `queued`, `running`, `succeeded`, `failed`, or `cancelled`.
Status FineTuningJobStatus `json:"status,required"`
// The total number of billable tokens processed by this fine-tuning job. The value
// will be null if the fine-tuning job is still running.
TrainedTokens int64 `json:"trained_tokens,required,nullable"`
// The file ID used for training. You can retrieve the training data with the
// [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents).
TrainingFile string `json:"training_file,required"`
// The file ID used for validation. You can retrieve the validation results with
// the
// [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents).
ValidationFile string `json:"validation_file,required,nullable"`
// The Unix timestamp (in seconds) for when the fine-tuning job is estimated to
// finish. The value will be null if the fine-tuning job is not running.
EstimatedFinish int64 `json:"estimated_finish,nullable"`
// A list of integrations to enable for this fine-tuning job.
Integrations []FineTuningJobWandbIntegrationObject `json:"integrations,nullable"`
JSON fineTuningJobJSON `json:"-"`
}
// fineTuningJobJSON contains the JSON metadata for the struct [FineTuningJob]
type fineTuningJobJSON struct {
ID apijson.Field
CreatedAt apijson.Field
Error apijson.Field
FineTunedModel apijson.Field
FinishedAt apijson.Field
Hyperparameters apijson.Field
Model apijson.Field
Object apijson.Field
OrganizationID apijson.Field
ResultFiles apijson.Field
Seed apijson.Field
Status apijson.Field
TrainedTokens apijson.Field
TrainingFile apijson.Field
ValidationFile apijson.Field
EstimatedFinish apijson.Field
Integrations apijson.Field
raw string
ExtraFields map[string]apijson.Field
}
func (r *FineTuningJob) UnmarshalJSON(data []byte) (err error) {
return apijson.UnmarshalRoot(data, r)
}
func (r fineTuningJobJSON) RawJSON() string {
return r.raw
}
// For fine-tuning jobs that have `failed`, this will contain more information on
// the cause of the failure.
type FineTuningJobError struct {
// A machine-readable error code.
Code string `json:"code,required"`
// A human-readable error message.
Message string `json:"message,required"`
// The parameter that was invalid, usually `training_file` or `validation_file`.
// This field will be null if the failure was not parameter-specific.
Param string `json:"param,required,nullable"`
JSON fineTuningJobErrorJSON `json:"-"`
}
// fineTuningJobErrorJSON contains the JSON metadata for the struct
// [FineTuningJobError]
type fineTuningJobErrorJSON struct {
Code apijson.Field
Message apijson.Field
Param apijson.Field
raw string
ExtraFields map[string]apijson.Field
}
func (r *FineTuningJobError) UnmarshalJSON(data []byte) (err error) {
return apijson.UnmarshalRoot(data, r)
}
func (r fineTuningJobErrorJSON) RawJSON() string {
return r.raw
}
// The hyperparameters used for the fine-tuning job. See the
// [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning) for
// more details.
type FineTuningJobHyperparameters struct {
// The number of epochs to train the model for. An epoch refers to one full cycle
// through the training dataset. "auto" decides the optimal number of epochs based
// on the size of the dataset. If setting the number manually, we support any
// number between 1 and 50 epochs.
NEpochs FineTuningJobHyperparametersNEpochsUnion `json:"n_epochs,required"`
JSON fineTuningJobHyperparametersJSON `json:"-"`
}
// fineTuningJobHyperparametersJSON contains the JSON metadata for the struct
// [FineTuningJobHyperparameters]
type fineTuningJobHyperparametersJSON struct {
NEpochs apijson.Field
raw string
ExtraFields map[string]apijson.Field
}
func (r *FineTuningJobHyperparameters) UnmarshalJSON(data []byte) (err error) {
return apijson.UnmarshalRoot(data, r)
}
func (r fineTuningJobHyperparametersJSON) RawJSON() string {
return r.raw
}
// The number of epochs to train the model for. An epoch refers to one full cycle
// through the training dataset. "auto" decides the optimal number of epochs based
// on the size of the dataset. If setting the number manually, we support any
// number between 1 and 50 epochs.
//
// Union satisfied by [FineTuningJobHyperparametersNEpochsString] or
// [shared.UnionInt].
type FineTuningJobHyperparametersNEpochsUnion interface {
ImplementsFineTuningJobHyperparametersNEpochsUnion()
}
func init() {
apijson.RegisterUnion(
reflect.TypeOf((*FineTuningJobHyperparametersNEpochsUnion)(nil)).Elem(),
"",
apijson.UnionVariant{
TypeFilter: gjson.String,
Type: reflect.TypeOf(FineTuningJobHyperparametersNEpochsString("")),
},
apijson.UnionVariant{
TypeFilter: gjson.Number,
Type: reflect.TypeOf(shared.UnionInt(0)),
},
)
}
type FineTuningJobHyperparametersNEpochsString string
const (
FineTuningJobHyperparametersNEpochsStringAuto FineTuningJobHyperparametersNEpochsString = "auto"
)
func (r FineTuningJobHyperparametersNEpochsString) IsKnown() bool {
switch r {
case FineTuningJobHyperparametersNEpochsStringAuto:
return true
}
return false
}
func (r FineTuningJobHyperparametersNEpochsString) ImplementsFineTuningJobHyperparametersNEpochsUnion() {
}
// The object type, which is always "fine_tuning.job".
type FineTuningJobObject string
const (
FineTuningJobObjectFineTuningJob FineTuningJobObject = "fine_tuning.job"
)
func (r FineTuningJobObject) IsKnown() bool {
switch r {
case FineTuningJobObjectFineTuningJob:
return true
}
return false
}
// The current status of the fine-tuning job, which can be either
// `validating_files`, `queued`, `running`, `succeeded`, `failed`, or `cancelled`.
type FineTuningJobStatus string
const (
FineTuningJobStatusValidatingFiles FineTuningJobStatus = "validating_files"
FineTuningJobStatusQueued FineTuningJobStatus = "queued"
FineTuningJobStatusRunning FineTuningJobStatus = "running"
FineTuningJobStatusSucceeded FineTuningJobStatus = "succeeded"
FineTuningJobStatusFailed FineTuningJobStatus = "failed"
FineTuningJobStatusCancelled FineTuningJobStatus = "cancelled"
)
func (r FineTuningJobStatus) IsKnown() bool {
switch r {
case FineTuningJobStatusValidatingFiles, FineTuningJobStatusQueued, FineTuningJobStatusRunning, FineTuningJobStatusSucceeded, FineTuningJobStatusFailed, FineTuningJobStatusCancelled:
return true
}
return false
}
// Fine-tuning job event object
type FineTuningJobEvent struct {
ID string `json:"id,required"`
CreatedAt int64 `json:"created_at,required"`
Level FineTuningJobEventLevel `json:"level,required"`
Message string `json:"message,required"`
Object FineTuningJobEventObject `json:"object,required"`
JSON fineTuningJobEventJSON `json:"-"`
}
// fineTuningJobEventJSON contains the JSON metadata for the struct
// [FineTuningJobEvent]
type fineTuningJobEventJSON struct {
ID apijson.Field
CreatedAt apijson.Field
Level apijson.Field
Message apijson.Field
Object apijson.Field
raw string
ExtraFields map[string]apijson.Field
}
func (r *FineTuningJobEvent) UnmarshalJSON(data []byte) (err error) {
return apijson.UnmarshalRoot(data, r)
}
func (r fineTuningJobEventJSON) RawJSON() string {
return r.raw
}
type FineTuningJobEventLevel string
const (
FineTuningJobEventLevelInfo FineTuningJobEventLevel = "info"
FineTuningJobEventLevelWarn FineTuningJobEventLevel = "warn"
FineTuningJobEventLevelError FineTuningJobEventLevel = "error"
)
func (r FineTuningJobEventLevel) IsKnown() bool {
switch r {
case FineTuningJobEventLevelInfo, FineTuningJobEventLevelWarn, FineTuningJobEventLevelError:
return true
}
return false
}
type FineTuningJobEventObject string
const (
FineTuningJobEventObjectFineTuningJobEvent FineTuningJobEventObject = "fine_tuning.job.event"
)
func (r FineTuningJobEventObject) IsKnown() bool {
switch r {
case FineTuningJobEventObjectFineTuningJobEvent:
return true
}
return false
}
type FineTuningJobWandbIntegrationObject struct {
// The type of the integration being enabled for the fine-tuning job
Type FineTuningJobWandbIntegrationObjectType `json:"type,required"`
// The settings for your integration with Weights and Biases. This payload
// specifies the project that metrics will be sent to. Optionally, you can set an
// explicit display name for your run, add tags to your run, and set a default
// entity (team, username, etc) to be associated with your run.
Wandb FineTuningJobWandbIntegration `json:"wandb,required"`
JSON fineTuningJobWandbIntegrationObjectJSON `json:"-"`
}
// fineTuningJobWandbIntegrationObjectJSON contains the JSON metadata for the
// struct [FineTuningJobWandbIntegrationObject]
type fineTuningJobWandbIntegrationObjectJSON struct {
Type apijson.Field
Wandb apijson.Field
raw string
ExtraFields map[string]apijson.Field
}
func (r *FineTuningJobWandbIntegrationObject) UnmarshalJSON(data []byte) (err error) {
return apijson.UnmarshalRoot(data, r)
}
func (r fineTuningJobWandbIntegrationObjectJSON) RawJSON() string {
return r.raw
}
// The type of the integration being enabled for the fine-tuning job
type FineTuningJobWandbIntegrationObjectType string
const (
FineTuningJobWandbIntegrationObjectTypeWandb FineTuningJobWandbIntegrationObjectType = "wandb"
)
func (r FineTuningJobWandbIntegrationObjectType) IsKnown() bool {
switch r {
case FineTuningJobWandbIntegrationObjectTypeWandb:
return true
}
return false
}
// The settings for your integration with Weights and Biases. This payload
// specifies the project that metrics will be sent to. Optionally, you can set an
// explicit display name for your run, add tags to your run, and set a default
// entity (team, username, etc) to be associated with your run.
type FineTuningJobWandbIntegration struct {
// The name of the project that the new run will be created under.
Project string `json:"project,required"`
// The entity to use for the run. This allows you to set the team or username of
// the WandB user that you would like associated with the run. If not set, the
// default entity for the registered WandB API key is used.
Entity string `json:"entity,nullable"`
// A display name to set for the run. If not set, we will use the Job ID as the
// name.
Name string `json:"name,nullable"`
// A list of tags to be attached to the newly created run. These tags are passed
// through directly to WandB. Some default tags are generated by OpenAI:
// "openai/finetune", "openai/{base-model}", "openai/{ftjob-abcdef}".
Tags []string `json:"tags"`
JSON fineTuningJobWandbIntegrationJSON `json:"-"`
}
// fineTuningJobWandbIntegrationJSON contains the JSON metadata for the struct
// [FineTuningJobWandbIntegration]
type fineTuningJobWandbIntegrationJSON struct {
Project apijson.Field
Entity apijson.Field
Name apijson.Field
Tags apijson.Field
raw string
ExtraFields map[string]apijson.Field
}
func (r *FineTuningJobWandbIntegration) UnmarshalJSON(data []byte) (err error) {
return apijson.UnmarshalRoot(data, r)
}
func (r fineTuningJobWandbIntegrationJSON) RawJSON() string {
return r.raw
}
type FineTuningJobNewParams struct {
// The name of the model to fine-tune. You can select one of the
// [supported models](https://platform.openai.com/docs/guides/fine-tuning/which-models-can-be-fine-tuned).
Model param.Field[FineTuningJobNewParamsModel] `json:"model,required"`
// The ID of an uploaded file that contains training data.
//
// See [upload file](https://platform.openai.com/docs/api-reference/files/create)
// for how to upload a file.
//
// Your dataset must be formatted as a JSONL file. Additionally, you must upload
// your file with the purpose `fine-tune`.
//
// The contents of the file should differ depending on if the model uses the
// [chat](https://platform.openai.com/docs/api-reference/fine-tuning/chat-input) or
// [completions](https://platform.openai.com/docs/api-reference/fine-tuning/completions-input)
// format.
//
// See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning)
// for more details.
TrainingFile param.Field[string] `json:"training_file,required"`
// The hyperparameters used for the fine-tuning job.
Hyperparameters param.Field[FineTuningJobNewParamsHyperparameters] `json:"hyperparameters"`
// A list of integrations to enable for your fine-tuning job.
Integrations param.Field[[]FineTuningJobNewParamsIntegration] `json:"integrations"`
// The seed controls the reproducibility of the job. Passing in the same seed and
// job parameters should produce the same results, but may differ in rare cases. If
// a seed is not specified, one will be generated for you.
Seed param.Field[int64] `json:"seed"`
// A string of up to 18 characters that will be added to your fine-tuned model
// name.
//
// For example, a `suffix` of "custom-model-name" would produce a model name like
// `ft:gpt-4o-mini:openai:custom-model-name:7p4lURel`.
Suffix param.Field[string] `json:"suffix"`
// The ID of an uploaded file that contains validation data.
//
// If you provide this file, the data is used to generate validation metrics
// periodically during fine-tuning. These metrics can be viewed in the fine-tuning
// results file. The same data should not be present in both train and validation
// files.
//
// Your dataset must be formatted as a JSONL file. You must upload your file with
// the purpose `fine-tune`.
//
// See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning)
// for more details.
ValidationFile param.Field[string] `json:"validation_file"`
}
func (r FineTuningJobNewParams) MarshalJSON() (data []byte, err error) {
return apijson.MarshalRoot(r)
}
type FineTuningJobNewParamsModel string
const (
FineTuningJobNewParamsModelBabbage002 FineTuningJobNewParamsModel = "babbage-002"
FineTuningJobNewParamsModelDavinci002 FineTuningJobNewParamsModel = "davinci-002"
FineTuningJobNewParamsModelGPT3_5Turbo FineTuningJobNewParamsModel = "gpt-3.5-turbo"
FineTuningJobNewParamsModelGPT4oMini FineTuningJobNewParamsModel = "gpt-4o-mini"
)
func (r FineTuningJobNewParamsModel) IsKnown() bool {
switch r {
case FineTuningJobNewParamsModelBabbage002, FineTuningJobNewParamsModelDavinci002, FineTuningJobNewParamsModelGPT3_5Turbo, FineTuningJobNewParamsModelGPT4oMini:
return true
}
return false
}
// The hyperparameters used for the fine-tuning job.
type FineTuningJobNewParamsHyperparameters struct {
// Number of examples in each batch. A larger batch size means that model
// parameters are updated less frequently, but with lower variance.
BatchSize param.Field[FineTuningJobNewParamsHyperparametersBatchSizeUnion] `json:"batch_size"`
// Scaling factor for the learning rate. A smaller learning rate may be useful to
// avoid overfitting.
LearningRateMultiplier param.Field[FineTuningJobNewParamsHyperparametersLearningRateMultiplierUnion] `json:"learning_rate_multiplier"`
// The number of epochs to train the model for. An epoch refers to one full cycle
// through the training dataset.
NEpochs param.Field[FineTuningJobNewParamsHyperparametersNEpochsUnion] `json:"n_epochs"`
}
func (r FineTuningJobNewParamsHyperparameters) MarshalJSON() (data []byte, err error) {
return apijson.MarshalRoot(r)
}
// Number of examples in each batch. A larger batch size means that model
// parameters are updated less frequently, but with lower variance.
//
// Satisfied by [FineTuningJobNewParamsHyperparametersBatchSizeString],
// [shared.UnionInt].
type FineTuningJobNewParamsHyperparametersBatchSizeUnion interface {
ImplementsFineTuningJobNewParamsHyperparametersBatchSizeUnion()
}
type FineTuningJobNewParamsHyperparametersBatchSizeString string
const (
FineTuningJobNewParamsHyperparametersBatchSizeStringAuto FineTuningJobNewParamsHyperparametersBatchSizeString = "auto"
)
func (r FineTuningJobNewParamsHyperparametersBatchSizeString) IsKnown() bool {
switch r {
case FineTuningJobNewParamsHyperparametersBatchSizeStringAuto:
return true
}
return false
}
func (r FineTuningJobNewParamsHyperparametersBatchSizeString) ImplementsFineTuningJobNewParamsHyperparametersBatchSizeUnion() {
}
// Scaling factor for the learning rate. A smaller learning rate may be useful to
// avoid overfitting.
//
// Satisfied by
// [FineTuningJobNewParamsHyperparametersLearningRateMultiplierString],
// [shared.UnionFloat].
type FineTuningJobNewParamsHyperparametersLearningRateMultiplierUnion interface {
ImplementsFineTuningJobNewParamsHyperparametersLearningRateMultiplierUnion()
}
type FineTuningJobNewParamsHyperparametersLearningRateMultiplierString string
const (
FineTuningJobNewParamsHyperparametersLearningRateMultiplierStringAuto FineTuningJobNewParamsHyperparametersLearningRateMultiplierString = "auto"
)
func (r FineTuningJobNewParamsHyperparametersLearningRateMultiplierString) IsKnown() bool {
switch r {
case FineTuningJobNewParamsHyperparametersLearningRateMultiplierStringAuto:
return true
}
return false
}
func (r FineTuningJobNewParamsHyperparametersLearningRateMultiplierString) ImplementsFineTuningJobNewParamsHyperparametersLearningRateMultiplierUnion() {
}
// The number of epochs to train the model for. An epoch refers to one full cycle
// through the training dataset.
//
// Satisfied by [FineTuningJobNewParamsHyperparametersNEpochsString],
// [shared.UnionInt].
type FineTuningJobNewParamsHyperparametersNEpochsUnion interface {
ImplementsFineTuningJobNewParamsHyperparametersNEpochsUnion()
}
type FineTuningJobNewParamsHyperparametersNEpochsString string
const (
FineTuningJobNewParamsHyperparametersNEpochsStringAuto FineTuningJobNewParamsHyperparametersNEpochsString = "auto"
)
func (r FineTuningJobNewParamsHyperparametersNEpochsString) IsKnown() bool {
switch r {
case FineTuningJobNewParamsHyperparametersNEpochsStringAuto:
return true
}
return false
}
func (r FineTuningJobNewParamsHyperparametersNEpochsString) ImplementsFineTuningJobNewParamsHyperparametersNEpochsUnion() {
}
type FineTuningJobNewParamsIntegration struct {
// The type of integration to enable. Currently, only "wandb" (Weights and Biases)
// is supported.
Type param.Field[FineTuningJobNewParamsIntegrationsType] `json:"type,required"`
// The settings for your integration with Weights and Biases. This payload
// specifies the project that metrics will be sent to. Optionally, you can set an
// explicit display name for your run, add tags to your run, and set a default
// entity (team, username, etc) to be associated with your run.
Wandb param.Field[FineTuningJobNewParamsIntegrationsWandb] `json:"wandb,required"`
}
func (r FineTuningJobNewParamsIntegration) MarshalJSON() (data []byte, err error) {
return apijson.MarshalRoot(r)
}
// The type of integration to enable. Currently, only "wandb" (Weights and Biases)
// is supported.
type FineTuningJobNewParamsIntegrationsType string
const (
FineTuningJobNewParamsIntegrationsTypeWandb FineTuningJobNewParamsIntegrationsType = "wandb"
)
func (r FineTuningJobNewParamsIntegrationsType) IsKnown() bool {
switch r {
case FineTuningJobNewParamsIntegrationsTypeWandb:
return true
}
return false
}
// The settings for your integration with Weights and Biases. This payload
// specifies the project that metrics will be sent to. Optionally, you can set an
// explicit display name for your run, add tags to your run, and set a default
// entity (team, username, etc) to be associated with your run.
type FineTuningJobNewParamsIntegrationsWandb struct {
// The name of the project that the new run will be created under.
Project param.Field[string] `json:"project,required"`
// The entity to use for the run. This allows you to set the team or username of
// the WandB user that you would like associated with the run. If not set, the
// default entity for the registered WandB API key is used.
Entity param.Field[string] `json:"entity"`
// A display name to set for the run. If not set, we will use the Job ID as the
// name.
Name param.Field[string] `json:"name"`
// A list of tags to be attached to the newly created run. These tags are passed
// through directly to WandB. Some default tags are generated by OpenAI:
// "openai/finetune", "openai/{base-model}", "openai/{ftjob-abcdef}".
Tags param.Field[[]string] `json:"tags"`
}
func (r FineTuningJobNewParamsIntegrationsWandb) MarshalJSON() (data []byte, err error) {
return apijson.MarshalRoot(r)
}
type FineTuningJobListParams struct {
// Identifier for the last job from the previous pagination request.
After param.Field[string] `query:"after"`
// Number of fine-tuning jobs to retrieve.
Limit param.Field[int64] `query:"limit"`
}
// URLQuery serializes [FineTuningJobListParams]'s query parameters as
// `url.Values`.
func (r FineTuningJobListParams) URLQuery() (v url.Values) {
return apiquery.MarshalWithSettings(r, apiquery.QuerySettings{
ArrayFormat: apiquery.ArrayQueryFormatBrackets,
NestedFormat: apiquery.NestedQueryFormatBrackets,
})
}
type FineTuningJobListEventsParams struct {
// Identifier for the last event from the previous pagination request.
After param.Field[string] `query:"after"`
// Number of events to retrieve.
Limit param.Field[int64] `query:"limit"`
}
// URLQuery serializes [FineTuningJobListEventsParams]'s query parameters as
// `url.Values`.
func (r FineTuningJobListEventsParams) URLQuery() (v url.Values) {
return apiquery.MarshalWithSettings(r, apiquery.QuerySettings{
ArrayFormat: apiquery.ArrayQueryFormatBrackets,
NestedFormat: apiquery.NestedQueryFormatBrackets,
})
}