forked from fhung65/CS145_Group_Project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
scraper.py
139 lines (114 loc) · 4.41 KB
/
scraper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import re
import tweepy
from tweepy import OAuthHandler
import sys
sys.path.insert(0,'.')
import keys
# Taken from http://www.geeksforgeeks.org/twitter-sentiment-analysis-using-python/
class TwitterClient(object):
'''
Generic Twitter Class for sentiment analysis.
'''
POSITIVE_STRING_SET = set(['☺️', ':)'])
NEGATIVE_STRING_SET = set(['☹️', ':('])
def __init__(self):
'''
Class constructor or initialization method.
'''
# keys and tokens from the Twitter Dev Console
consumer_key = keys.CONSUMER_KEY
consumer_secret = keys.CONSUMER_SECRET
access_token = keys.ACCESS_TOKEN
access_token_secret = keys.ACCESS_TOKEN_SECRET
# attempt authentication
try:
# create OAuthHandler object
self.auth = OAuthHandler(consumer_key, consumer_secret)
# set access token and secret
self.auth.set_access_token(access_token, access_token_secret)
# create tweepy API object to fetch tweets
self.api = tweepy.API(self.auth)
except:
print("Error: Authentication Failed")
def clean_tweet(self, tweet):
'''
Utility function to clean tweet text by removing links, special characters
using simple regex statements.
'''
return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)", " ", tweet).split())
def get_tweet_sentiment(self, tweet):
'''
Utility function to classify sentiment of passed tweet
'''
sentiment = 0.5
for substring in self.POSITIVE_STRING_SET:
if substring in tweet.text:
sentiment += 0.5
break
for substring in self.NEGATIVE_STRING_SET:
if substring in tweet.text:
sentiment -= 0.5
break
return sentiment
def get_tweets(self, queries = None, count = 1000):
'''
Main function to fetch tweets and parse them.
'''
# empty list to store parsed tweets
tweets = []
if queries is None:
queries = self.POSITIVE_STRING_SET | self.NEGATIVE_STRING_SET
try:
# call twitter api to fetch tweets
fetched_tweets = []
for q in queries:
fetched_tweets += self.api.search(q = q, count = count)
# parsing tweets one by one
for tweet in fetched_tweets:
# empty dictionary to store required params of a tweet
parsed_tweet = {}
# saving text of tweet
parsed_tweet['text'] = self.clean_tweet(tweet.text)
if parsed_tweet['text'] == '':
continue
# saving sentiment of tweet
parsed_tweet['sentiment'] = self.get_tweet_sentiment(tweet)
if parsed_tweet['sentiment'] == 0.5:
continue
# appending parsed tweet to tweets list
if tweet.retweet_count > 0:
# if tweet has retweets, ensure that it is appended only once
if parsed_tweet not in tweets:
tweets.append(parsed_tweet)
else:
tweets.append(parsed_tweet)
# return parsed tweets
return tweets
except tweepy.TweepError as e:
# print error (if any)
print("Error : " + str(e))
def main():
# creating object of TwitterClient Class
api = TwitterClient()
# calling function to get tweets
tweets = api.get_tweets(count = 10000)
print(tweets)
# picking positive tweets from tweets
ptweets = [tweet for tweet in tweets if tweet['sentiment'] == 1]
# percentage of positive tweets
print("Positive tweets percentage: {} %".format(100*len(ptweets)/len(tweets)))
# picking negative tweets from tweets
ntweets = [tweet for tweet in tweets if tweet['sentiment'] == 0]
# percentage of negative tweets
print("Negative tweets percentage: {} %".format(100*len(ntweets)/len(tweets)))
# printing first 5 positive tweets
print("\n\nPositive tweets:")
for tweet in ptweets[:10]:
print(tweet['text'])
# printing first 5 negative tweets
print("\n\nNegative tweets:")
for tweet in ntweets[:10]:
print(tweet['text'])
if __name__ == "__main__":
# calling main function
main()