-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathP12.js
77 lines (65 loc) · 1.8 KB
/
P12.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/* ====== Problem 12 =================================== *
*
* The sequence of triangle numbers is generated by adding the natural
* numbers. So the 7th triangle number would be
* 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
*
* 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
*
* Let us list the factors of the first seven triangle numbers:
*
* 1: 1
* 3: 1,3
* 6: 1,2,3,6
* 10: 1,2,5,10
* 15: 1,3,5,15
* 21: 1,3,7,21
* 28: 1,2,4,7,14,28
*
* We can see that 28 is the first triangle number to have over five divisors.
*
* What is the value of the first triangle number to have over five hundred
* divisors?
*
* ========================================**/
const assert = require('assert');
var factorialArray = [[]];
Array.prototype.numberOfFactors = function(num) {
for (var i = num; i > 0; i--) {
if (num % i === 0)
this.push(i);
}
return this.length;
}
function triangleDigits(max_dividend) {
var dividend_array = [],
tri_digit = 0,
count = 0;
while (max_dividend > dividend_array.numberOfFactors(tri_digit)) {
dividend_array = [];
count++;
tri_digit += count;
}
return tri_digit;
}
function solution() {
var answer = triangleDigits(500);
console.log(`The solution to problem 12 is: ${answer}`);
}
solution();
assert.equal(triangleDigits(5), 28);
/* ====== Meta ========================================= *
*
* Estimated time of completion: 20 minutes
*
* Search engine used:
*
* Concepts learned: This is such a brute force method.
* Trying to think of ways we could predict whether
* or not to check the factorial before looking to
* see its whole length. What is the intelligent method
* for this?
*
* Additional notes:
*
* ========================================**/