-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolo.py
51 lines (37 loc) · 1.72 KB
/
yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
import argparse
from pathlib import Path
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # only error messages, please
argparser = argparse.ArgumentParser()
argparser.add_argument('--version', type=str, help='select the YOLO version',
choices=['3', '3-tiny', '4'], default='3')
argparser.add_argument('--save', help='save the model as an .h5 file', action='store_true')
argparser.add_argument('--print', help='print generated model', action='store_true')
argparser.add_argument('image_file', type=str, nargs='?', help='image to process')
args = argparser.parse_args()
if not (args.print or args.save or args.image_file != None):
argparser.print_usage()
quit()
saved_model = Path(f'yolo{args.version}.h5')
import d2k
from PIL import Image
if (args.image_file != None and not args.print and saved_model.exists()):
import tensorflow.keras as keras
model = keras.models.load_model(saved_model, compile=False)
else:
network = d2k.network.load(Path(f'darknet-files/yolov{args.version}.cfg').read_text())
network.read_darknet_weights(Path(f'darknet-files/yolov{args.version}.weights').read_bytes())
model = network.make_model()
if (args.print):
print('\n'.join(network.convert()), '\n')
if (args.save):
model.save(str(saved_model))
if args.image_file != None:
image = d2k.image.load(args.image_file)
boxes = d2k.network.detect_image(model, image)
names = Path('darknet-files/coco.names').read_text().splitlines()
for b in sorted(boxes):
print(f'{str(b.corners()):<25}', ' '.join([f'{names[i]} {c:>5.2f}' for i, c in enumerate(b.classes) if c > 0.]))
im = Image.open(args.image_file)
d2k.box.draw_boxes(im, boxes, names=names)
im.show()