-
Notifications
You must be signed in to change notification settings - Fork 1
/
main_mccho.py
366 lines (310 loc) · 15.9 KB
/
main_mccho.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# This source code is adapted from:
# MCC: https://github.com/facebookresearch/MCC
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# MAE: https://github.com/facebookresearch/mae
# --------------------------------------------------------
import argparse
import datetime
import json
import numpy as np
import os
import time
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
import timm.optim.optim_factory as optim_factory
import util.misc as misc
import mccho_model
from util.misc import NativeScalerWithGradNormCount as NativeScaler
from util.mccho_dataset import MCCHODataset, mccho_collate_fn
from engine_mccho import train_one_epoch, run_viz, eval_one_epoch
from util.dataset_utils import get_all_dataset_maps
def get_param_groups_with_weight_decay(model, weight_decay, seg_lr, skip_list=()):
decay = []
no_decay = []
segment_decay = []
segment_no_decay = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue # frozen weights
if 'decoder_label' in name:
if name.endswith('.bias'):
segment_no_decay.append(param)
else:
segment_decay.append(param)
elif len(param.shape) == 1 or name.endswith('.bias') or name in skip_list:
no_decay.append(param)
else:
decay.append(param)
return [
{'params': no_decay, 'weight_decay': 0.},
{'params': decay, 'weight_decay': weight_decay},
{'params': segment_no_decay, 'weight_decay': 0., 'lr': seg_lr},
{'params': segment_decay, 'weight_decay': weight_decay, 'lr': seg_lr}]
def get_args_parser():
parser = argparse.ArgumentParser('MCC', add_help=False)
# Model
parser.add_argument('--input_size', default=224, type=int,
help='Images input size')
parser.add_argument('--occupancy_weight', default=1.0, type=float,
help='A constant to weight the occupancy loss')
parser.add_argument('--rgb_weight', default=0.01, type=float,
help='A constant to weight the color prediction loss')
parser.add_argument('--n_queries', default=1024, type=int,
help='Number of queries used in decoder.')
parser.add_argument('--drop_path', default=0.1, type=float,
help='drop_path probability')
parser.add_argument('--regress_color', action='store_true',
help='If true, regress color with MSE. Otherwise, 256-way classification for each channel.')
parser.add_argument('--segmentation_label', default=True, action='store_true',
help='If true, distinguish between predicted hand and object geometry.')
# Training
parser.add_argument('--shuffle_train', action='store_true', default=False,
help='If true, shuffle training examples.')
parser.add_argument('--batch_size', default=16, type=int,
help='Batch size per GPU for training (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--eval_batch_size', default=2, type=int,
help='Batch size per GPU for evaluation (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
parser.add_argument('--weight_decay', type=float, default=1e-5,
help='Weight decay (default: 1e-5)')
parser.add_argument('--lr', type=float, default=1e-5, metavar='LR',
help='Learning rate (absolute lr, default: 1e-5)')
parser.add_argument('--blr', type=float, default=1e-4, metavar='LR',
help='Base learning rate: absolute_lr = base_lr * total_batch_size / 512')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='Lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--seg_lr', type=float, default=1e-5, help='Segmentation layers learning rate')
parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N',
help='Epochs to warmup LR')
parser.add_argument('--clip_grad', type=float, default=1.0,
help='Clip gradient at the specified norm')
# Job
parser.add_argument('--job_dir', default='./job_dir',
help='Path to where to save, empty for no saving')
parser.add_argument('--output_dir', default='./output_dir',
help='Path to where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='Device to use for training / testing')
parser.add_argument('--seed', default=0, type=int,
help='Random seed.')
parser.add_argument('--resume', default='',
help='Resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='Start epoch')
parser.add_argument('--num_workers', default=4, type=int,
help='Number of workers for training data loader')
parser.add_argument('--num_eval_workers', default=4, type=int,
help='Number of workers for evaluation data loader')
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# Distributed training
parser.add_argument('--world_size', default=1, type=int,
help='Number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='Url used to set up distributed training')
# Experiments
parser.add_argument('--debug', action='store_true')
parser.add_argument('--run_viz', action='store_true',
help='Specify to run only the visualization/inference given a trained model.')
parser.add_argument('--refine_grid', action='store_true',
help='Specify to set voxel grid parameters based on prior inference.')
parser.add_argument('--max_n_viz_obj', default=10, type=int,
help='Max number of objects to visualize during training.')
parser.add_argument('--max_n_eval', default=4, type=int,
help='Max number of objects to visualize during training.')
# Data
parser.add_argument('--train_epoch_len_multiplier', default=1, type=int,
help='# examples per training epoch is # objects * train_epoch_len_multiplier')
parser.add_argument('--eval_epoch_len_multiplier', default=1, type=int,
help='# examples per eval epoch is # objects * eval_epoch_len_multiplier')
# MCC-HO
parser.add_argument('--mccho_path', type=str, default='mccho_data',
help='Path to MCC-HO data.')
parser.add_argument('--dataset_cache', type=str,
help='Path to CO3D v2 dataset cache.')
parser.add_argument('--holdout_categories', action='store_true',
help='If true, hold out 10 categories and train on only the remaining 41 categories.')
parser.add_argument('--mccho_world_size', default=3.0, type=float,
help='The world space we consider is \in [-mccho_world_size, mccho_world_size] in each dimension.')
# Data aug
parser.add_argument('--random_scale_delta', default=0.2, type=float,
help='Random scaling each example by a scaler \in [1 - random_scale_delta, 1 + random_scale_delta].')
parser.add_argument('--random_shift', default=1.0, type=float,
help='Random shifting an example in each axis by an amount \in [-random_shift, random_shift]')
parser.add_argument('--random_rotate_degree', default=180, type=int,
help='Random rotation degrees.')
# Smapling, evaluation, and coordinate system
parser.add_argument('--shrink_threshold', default=10.0, type=float,
help='Any points with distance beyond this value will be shrunk.')
parser.add_argument('--semisphere_size', default=6.0, type=float,
help='The Hypersim task predicts points in a semisphere in front of the camera.'
'This value specifies the size of the semisphere.')
parser.add_argument('--eval_granularity', default=0.1, type=float,
help='Granularity of the evaluation points.')
parser.add_argument('--viz_granularity', default=0.1, type=float,
help='Granularity of points in visaulizatoin.')
parser.add_argument('--eval_score_threshold', default=0.1, type=float,
help='Score threshold for evaluation.')
parser.add_argument('--eval_dist_threshold', default=0.1, type=float,
help='Points closer than this amount to a groud-truth is considered correct.')
parser.add_argument('--train_dist_threshold', default=0.05, type=float,
help='Points closer than this amount is considered positive in training.')
return parser
def build_loader(args, num_tasks, global_rank, is_train, dataset_type, collate_fn, dataset_maps, shuffle_train):
'''Build data loader'''
dataset = dataset_type(args, is_train=is_train, dataset_maps=dataset_maps)
sampler_train = torch.utils.data.DistributedSampler(
dataset, num_replicas=num_tasks, rank=global_rank, shuffle=shuffle_train
)
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=args.batch_size if is_train else args.eval_batch_size,
sampler=sampler_train,
num_workers=args.num_workers if is_train else args.num_eval_workers,
pin_memory=args.pin_mem,
collate_fn=collate_fn,
)
return data_loader
def main(args):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
# Save args
def namespace_to_dict(namespace):
return {
k: namespace_to_dict(v) if isinstance(v, argparse.Namespace) else v
for k, v in vars(namespace).items()
}
with open(os.path.join(args.output_dir, 'args.json'), 'w') as f:
json.dump(namespace_to_dict(args), f)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
# define the model
model = mccho_model.get_mccho_model(
rgb_weight=args.rgb_weight,
occupancy_weight=args.occupancy_weight,
args=args,
)
model.to(device)
model_without_ddp = model
print("Model = %s" % str(model_without_ddp))
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 512
print("base lr: %.2e" % (args.blr))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
# following timm: set wd as 0 for bias and norm layers
# param_groups = optim_factory.add_weight_decay(model_without_ddp, args.weight_decay)
# NOTE(jwu): Custom parameter groups to account for segmentation.
param_groups = get_param_groups_with_weight_decay(model_without_ddp, args.weight_decay, args.seg_lr)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
loss_scaler = NativeScaler()
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
dataset_type = MCCHODataset
collate_fn = mccho_collate_fn
dataset_maps = get_all_dataset_maps(
args.mccho_path, args.dataset_cache, args.holdout_categories, args.run_viz
)
dataset_viz = dataset_type(args, is_train=False, is_viz=True, dataset_maps=dataset_maps)
# Shuffle except for visualization
shuffle_viz = False if args.run_viz else True
sampler_viz = torch.utils.data.DistributedSampler(
dataset_viz, num_replicas=num_tasks, rank=global_rank, shuffle=shuffle_viz
)
data_loader_viz = torch.utils.data.DataLoader(
dataset_viz, batch_size=1,
sampler=sampler_viz,
num_workers=args.num_eval_workers,
pin_memory=args.pin_mem,
collate_fn=collate_fn,
)
if args.run_viz:
os.makedirs(args.job_dir, exist_ok=True)
run_viz(
model, data_loader_viz,
device, args=args, epoch=0,
)
exit()
data_loader_train, data_loader_val = [
build_loader(
args, num_tasks, global_rank,
is_train=is_train,
dataset_type=dataset_type, collate_fn=collate_fn, dataset_maps=dataset_maps, shuffle_train=args.shuffle_train
) for is_train in [True, False]
]
print('TRAIN DATALOADER:', len(data_loader_train.dataset))
'''
# Set trainable parameters
print("Set trainable parameters")
for name, param in model.named_parameters():
if 'decoder' in name:
param.requires_grad = True
else:
param.requires_grad = False
'''
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
print(f'Epoch {epoch}:')
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, data_loader_train,
optimizer, device, epoch, loss_scaler,
args=args,
)
val_stats = {}
if epoch == 0 or (epoch % 100 == 49 or epoch + 1 == args.epochs) or args.debug:
val_stats = eval_one_epoch(
model, data_loader_val,
device, args=args,
)
if epoch == 0 or (epoch % 100 == 1 or epoch + 1 == args.epochs) or args.debug:
run_viz(
model, data_loader_viz,
device, args=args, epoch=epoch,
)
if args.output_dir and (epoch % 100 == 99 or epoch + 1 == args.epochs):
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'val_{k}': v for k, v in val_stats.items()},
'epoch': epoch,}
if args.output_dir and misc.is_main_process():
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
run_viz(
model, data_loader_viz,
device, args=args, epoch=-1,
)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)