-
Assume that
$A(x)$ is the ogf for$(a_n)$ . Express the generating function for$\sum_{n\ge 0} a_{3n}x^n$ in terms of$A(x)$ .solution
-
${1\over 3}(A(x^{1/3}) + A(\omega x^{1/3})) + A(\omega^2 x^{1/3})$ , where$\omega=e^{2\pi i/3}$
-
-
Compute
$S_n=\sum_{n\ge 0} F_{3n}\cdot 10^{-n}$ (by plugging a suitable value into the generating function for$F_{3n}$ ).solution
- The gf is
${2x\over 1-4x-x^2}$ and$S_n=20/59$ .
- The gf is
-
Compute
$\sum_k {n\choose 4k}$ .solution
$2^{{n\over 2} - 2} \left(2^{n\over 2} + \cos\left({1\over 4}n \pi\right) + (-1)^n \cos\left({3\over 4}n \pi\right)\right)$
-
Compute
$\sum_k {6m\choose 3k+1}$ .solution
- Compute it for general
$n$ and then plug in$n=6m$ $(2^{6m}-1)/3$
- Compute it for general
-
Evaluate
$S_n = \sum_{0\le k\le n} (-1)^k k^2$ .solution
$f(x) = {-x\over (1+x)^3}$ $S_n={1\over 2}(-1)^n n(n+1)$
-
Find ogf for
$H_n = 1 + 1/2 + 1/3 + \dots$ .solution
${-\ln(1-x) \over 1-x}$
-
Find the number of ways of cutting a convex
$n$ -gon with labelled vertices into triangles.solution
-
$C_{n-2}$ (shifted Catalan numbers)
-