Skip to content

Latest commit

 

History

History
53 lines (38 loc) · 1.48 KB

c3.md

File metadata and controls

53 lines (38 loc) · 1.48 KB

Exercises: (mostly) skipping sequence elements

  1. Assume that $A(x)$ is the ogf for $(a_n)$. Express the generating function for $\sum_{n\ge 0} a_{3n}x^n$ in terms of $A(x)$.

    solution
    • ${1\over 3}(A(x^{1/3}) + A(\omega x^{1/3})) + A(\omega^2 x^{1/3})$, where $\omega=e^{2\pi i/3}$
  2. Compute $S_n=\sum_{n\ge 0} F_{3n}\cdot 10^{-n}$ (by plugging a suitable value into the generating function for $F_{3n}$).

    solution
    • The gf is ${2x\over 1-4x-x^2}$ and $S_n=20/59$.
  3. Compute $\sum_k {n\choose 4k}$.

    solution
    • $2^{{n\over 2} - 2} \left(2^{n\over 2} + \cos\left({1\over 4}n \pi\right) + (-1)^n \cos\left({3\over 4}n \pi\right)\right)$
  4. Compute $\sum_k {6m\choose 3k+1}$.

    solution
    • Compute it for general $n$ and then plug in $n=6m$
    • $(2^{6m}-1)/3$
  5. Evaluate $S_n = \sum_{0\le k\le n} (-1)^k k^2$.

    solution
    • $f(x) = {-x\over (1+x)^3}$
    • $S_n={1\over 2}(-1)^n n(n+1)$
  6. Find ogf for $H_n = 1 + 1/2 + 1/3 + \dots$.

    solution
    • ${-\ln(1-x) \over 1-x}$
  7. Find the number of ways of cutting a convex $n$-gon with labelled vertices into triangles.

    solution
    • $C_{n-2}$ (shifted Catalan numbers)