-
Notifications
You must be signed in to change notification settings - Fork 225
/
Copy pathanalyze_tagger_coverage.py
executable file
·161 lines (127 loc) · 5.45 KB
/
analyze_tagger_coverage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/usr/bin/env python
import argparse, collections, math, os.path
import nltk.corpus, nltk.corpus.reader, nltk.data, nltk.tag, nltk.metrics
from nltk.corpus.util import LazyCorpusLoader
from nltk_trainer import load_corpus_reader, load_model, simplify_wsj_tag
from nltk_trainer.tagging import taggers
########################################
## command options & argument parsing ##
########################################
parser = argparse.ArgumentParser(description='Analyze a part-of-speech tagger on a tagged corpus',
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('corpus',
help='''The name of a tagged corpus included with NLTK, such as treebank,
brown, cess_esp, floresta, or the root path to a corpus directory,
which can be either an absolute path or relative to a nltk_data directory.''')
parser.add_argument('--tagger', default=None,
help='''pickled tagger filename/path relative to an nltk_data directory
default is NLTK's default tagger''')
parser.add_argument('--trace', default=1, type=int,
help='How much trace output you want, defaults to 1. 0 is no trace output.')
parser.add_argument('--metrics', action='store_true', default=False,
help='Use tagged sentences to determine tagger accuracy and tag precision & recall')
corpus_group = parser.add_argument_group('Corpus Reader Options')
corpus_group.add_argument('--reader', default=None,
help='''Full module path to a corpus reader class, such as
nltk.corpus.reader.tagged.TaggedCorpusReader''')
corpus_group.add_argument('--fileids', default=None,
help='Specify fileids to load from corpus')
corpus_group.add_argument('--fraction', default=1.0, type=float,
help='''The fraction of the corpus to use for testing coverage''')
if simplify_wsj_tag:
corpus_group.add_argument('--simplify_tags', action='store_true', default=False,
help='Use simplified tags')
else:
corpus_group.add_argument('--tagset', default=None,
help='Map tags to a given tagset, such as "universal"')
args = parser.parse_args()
###################
## corpus reader ##
###################
corpus = load_corpus_reader(args.corpus, reader=args.reader, fileids=args.fileids)
kwargs = {'fileids': args.fileids}
if simplify_wsj_tag and args.simplify_tags and not args.metrics:
raise ValueError('simplify_tags can only be used with the --metrics option')
elif simplify_wsj_tag and args.simplify_tags and args.corpus not in ['conll2000', 'switchboard']:
kwargs['simplify_tags'] = True
elif not simplify_wsj_tag and args.tagset and not args.metrics:
raise ValueError('tagset can only be used with the --metrics option')
elif not simplify_wsj_tag and args.tagset:
kwargs['tagset'] = args.tagset
# TODO: support corpora with alternatives to tagged_sents that work just as well
if args.metrics and not hasattr(corpus, 'tagged_sents'):
raise ValueError('%s does not support metrics' % args.corpus)
############
## tagger ##
############
if args.trace:
print('loading tagger %s' % args.tagger)
if not args.tagger:
tagger = nltk.tag._get_tagger()
elif args.tagger == 'pattern':
tagger = taggers.PatternTagger()
else:
tagger = load_model(args.tagger)
#######################
## coverage analysis ##
#######################
if args.trace:
print('analyzing tag coverage of %s with %s\n' % (args.corpus, tagger.__class__.__name__))
tags_found = collections.defaultdict(int)
unknown_words = set()
if args.metrics:
tags_actual = collections.defaultdict(int)
tag_refs = []
tag_test = []
tag_word_refs = collections.defaultdict(set)
tag_word_test = collections.defaultdict(set)
tagged_sents = corpus.tagged_sents(**kwargs)
taglen = 7
if args.fraction != 1.0:
cutoff = int(math.ceil(len(tagged_sents) * args.fraction))
tagged_sents = tagged_sents[:cutoff]
for tagged_sent in tagged_sents:
for word, tag in tagged_sent:
tags_actual[tag] += 1
tag_refs.append(tag)
tag_word_refs[tag].add(word)
if len(tag) > taglen:
taglen = len(tag)
for word, tag in tagger.tag(nltk.tag.untag(tagged_sent)):
tags_found[tag] += 1
tag_test.append(tag)
tag_word_test[tag].add(word)
if tag == '-NONE-':
unknown_words.add(word)
print('Accuracy: %f' % nltk.metrics.accuracy(tag_refs, tag_test))
print('Unknown words: %d' % len(unknown_words))
if args.trace and unknown_words:
print(', '.join(sorted(unknown_words)))
print('')
print(' '.join(['Tag'.center(taglen), 'Found'.center(9), 'Actual'.center(10),
'Precision'.center(13), 'Recall'.center(13)]))
print(' '.join(['='*taglen, '='*9, '='*10, '='*13, '='*13]))
for tag in sorted(set(tags_found.keys()) | set(tags_actual.keys())):
found = tags_found[tag]
actual = tags_actual[tag]
precision = nltk.metrics.precision(tag_word_refs[tag], tag_word_test[tag])
recall = nltk.metrics.recall(tag_word_refs[tag], tag_word_test[tag])
print(' '.join([tag.ljust(taglen), str(found).rjust(9), str(actual).rjust(10),
str(precision).ljust(13)[:13], str(recall).ljust(13)[:13]]))
print(' '.join(['='*taglen, '='*9, '='*10, '='*13, '='*13]))
else:
sents = corpus.sents(**kwargs)
taglen = 7
if args.fraction != 1.0:
cutoff = int(math.ceil(len(sents) * args.fraction))
sents = sents[:cutoff]
for sent in sents:
for word, tag in tagger.tag(sent):
tags_found[tag] += 1
if len(tag) > taglen:
taglen = len(tag)
print(' '.join(['Tag'.center(taglen), 'Count'.center(9)]))
print(' '.join(['='*taglen, '='*9]))
for tag in sorted(tags_found.keys()):
print(' '.join([tag.ljust(taglen), str(tags_found[tag]).rjust(9)]))
print(' '.join(['='*taglen, '='*9]))