forked from datquocnguyen/jPTDP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
jPTDP.py
176 lines (145 loc) · 8.86 KB
/
jPTDP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# coding=utf-8
from optparse import OptionParser
import pickle, utils, learner, os, os.path, time
if __name__ == '__main__':
parser = OptionParser()
parser.add_option("--train", dest="conll_train", help="Path to annotated CONLL train file", metavar="FILE", default="N/A")
parser.add_option("--dev", dest="conll_dev", help="Path to annotated CONLL dev file", metavar="FILE", default="N/A")
parser.add_option("--test", dest="conll_test", help="Path to CONLL test file", metavar="FILE", default="N/A")
parser.add_option("--output", dest="conll_test_output", help="File name for predicted output", metavar="FILE", default="N/A")
parser.add_option("--prevectors", dest="external_embedding", help="Pre-trained vector embeddings", metavar="FILE")
parser.add_option("--params", dest="params", help="Parameters file", metavar="FILE", default="model.params")
parser.add_option("--model", dest="model", help="Load/Save model file", metavar="FILE", default="model")
parser.add_option("--wembedding", type="int", dest="wembedding_dims", default=100)
parser.add_option("--cembedding", type="int", dest="cembedding_dims", default=50)
parser.add_option("--pembedding", type="int", dest="pembedding_dims", default=100)
parser.add_option("--epochs", type="int", dest="epochs", default=30)
parser.add_option("--hidden", type="int", dest="hidden_units", default=100)
#parser.add_option("--lr", type="float", dest="learning_rate", default=None)
parser.add_option("--outdir", type="string", dest="output", default="results")
parser.add_option("--activation", type="string", dest="activation", default="tanh")
parser.add_option("--lstmlayers", type="int", dest="lstm_layers", default=2)
parser.add_option("--lstmdims", type="int", dest="lstm_dims", default=128)
parser.add_option("--disableblstm", action="store_false", dest="blstmFlag", default=True)
parser.add_option("--disablelabels", action="store_false", dest="labelsFlag", default=True)
parser.add_option("--predict", action="store_true", dest="predictFlag", default=False)
parser.add_option("--bibi-lstm", action="store_false", dest="bibiFlag", default=True)
parser.add_option("--disablecostaug", action="store_false", dest="costaugFlag", default=True)
parser.add_option("--dynet-seed", type="int", dest="seed", default=0)
parser.add_option("--dynet-mem", type="int", dest="mem", default=0)
(options, args) = parser.parse_args()
#print 'Using external embedding:', options.external_embedding
if options.predictFlag:
with open(options.params, 'r') as paramsfp:
words, w2i, c2i, pos, rels, stored_opt = pickle.load(paramsfp)
stored_opt.external_embedding = None
print 'Loading pre-trained model'
parser = learner.jPosDepLearner(words, pos, rels, w2i, c2i, stored_opt)
parser.Load(options.model)
testoutpath = os.path.join(options.output, options.conll_test_output)
print 'Predicting POS tags and parsing dependencies'
#ts = time.time()
#test_pred = list(parser.Predict(options.conll_test))
#te = time.time()
#print 'Finished in', te-ts, 'seconds.'
#utils.write_conll(testoutpath, test_pred)
with open(testoutpath, 'w') as fh:
for sentence in parser.Predict(options.conll_test):
for entry in sentence[1:]:
fh.write(str(entry) + '\n')
fh.write('\n')
else:
print("Training file: " + options.conll_train)
if options.conll_dev != "N/A":
print("Development file: " + options.conll_dev)
highestScore = 0.0
eId = 0
if os.path.isfile(os.path.join(options.output, options.params)) and \
os.path.isfile(os.path.join(options.output, os.path.basename(options.model))) :
print 'Found a previous saved model => Loading this model'
with open(os.path.join(options.output, options.params), 'r') as paramsfp:
words, w2i, c2i, pos, rels, stored_opt = pickle.load(paramsfp)
stored_opt.external_embedding = None
parser = learner.jPosDepLearner(words, pos, rels, w2i, c2i, stored_opt)
parser.Load(os.path.join(options.output, os.path.basename(options.model)))
parser.trainer.restart()
if options.conll_dev != "N/A":
devPredSents = parser.Predict(options.conll_dev)
count = 0
lasCount = 0
uasCount = 0
posCount = 0
poslasCount = 0
for idSent, devSent in enumerate(devPredSents):
conll_devSent = [entry for entry in devSent if isinstance(entry, utils.ConllEntry)]
for entry in conll_devSent:
if entry.id <= 0:
continue
if entry.pos == entry.pred_pos and entry.parent_id == entry.pred_parent_id and entry.pred_relation == entry.relation:
poslasCount += 1
if entry.pos == entry.pred_pos:
posCount += 1
if entry.parent_id == entry.pred_parent_id and entry.pred_relation == entry.relation:
lasCount += 1
if entry.parent_id == entry.pred_parent_id:
uasCount += 1
count += 1
print "---\nLAS accuracy:\t%.2f" % (float(lasCount) * 100 / count)
print "UAS accuracy:\t%.2f" % (float(uasCount) * 100 / count)
print "POS accuracy:\t%.2f" % (float(posCount) * 100 / count)
print "POS&LAS:\t%.2f" % (float(poslasCount) * 100 / count)
score = float(poslasCount) * 100 / count
if score >= highestScore:
parser.Save(os.path.join(options.output, os.path.basename(options.model)))
highestScore = score
print "POS&LAS of the previous saved model: %.2f" % (highestScore)
else:
print 'Extracting vocabulary'
words, w2i, c2i, pos, rels = utils.vocab(options.conll_train)
with open(os.path.join(options.output, options.params), 'w') as paramsfp:
pickle.dump((words, w2i, c2i, pos, rels, options), paramsfp)
#print 'Initializing joint model'
parser = learner.jPosDepLearner(words, pos, rels, w2i, c2i, options)
for epoch in xrange(options.epochs):
print '\n-----------------\nStarting epoch', epoch + 1
if epoch % 10 == 0:
if epoch == 0:
parser.trainer.restart(learning_rate=0.001)
elif epoch == 10:
parser.trainer.restart(learning_rate=0.0005)
else:
parser.trainer.restart(learning_rate=0.00025)
parser.Train(options.conll_train)
if options.conll_dev == "N/A":
parser.Save(os.path.join(options.output, os.path.basename(options.model)))
else:
devPredSents = parser.Predict(options.conll_dev)
count = 0
lasCount = 0
uasCount = 0
posCount = 0
poslasCount = 0
for idSent, devSent in enumerate(devPredSents):
conll_devSent = [entry for entry in devSent if isinstance(entry, utils.ConllEntry)]
for entry in conll_devSent:
if entry.id <= 0:
continue
if entry.pos == entry.pred_pos and entry.parent_id == entry.pred_parent_id and entry.pred_relation == entry.relation:
poslasCount += 1
if entry.pos == entry.pred_pos:
posCount += 1
if entry.parent_id == entry.pred_parent_id and entry.pred_relation == entry.relation:
lasCount += 1
if entry.parent_id == entry.pred_parent_id:
uasCount += 1
count += 1
print "---\nLAS accuracy:\t%.2f" % (float(lasCount) * 100 / count)
print "UAS accuracy:\t%.2f" % (float(uasCount) * 100 / count)
print "POS accuracy:\t%.2f" % (float(posCount) * 100 / count)
print "POS&LAS:\t%.2f" % (float(poslasCount) * 100 / count)
score = float(poslasCount) * 100 / count
if score >= highestScore:
parser.Save(os.path.join(options.output, os.path.basename(options.model)))
highestScore = score
eId = epoch + 1
print "Highest POS&LAS: %.2f at epoch %d" % (highestScore, eId)