forked from steveicarus/iverilog
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PDelays.cc
200 lines (163 loc) · 5.22 KB
/
PDelays.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*
* Copyright (c) 1999-2011 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "config.h"
# include <iostream>
# include "PDelays.h"
# include "PExpr.h"
# include "verinum.h"
# include "netmisc.h"
bool dly_used_no_timescale = false;
bool dly_used_timescale = false;
bool display_ts_dly_warning = true;
PDelays::PDelays()
{
delete_flag_ = true;
for (unsigned idx = 0 ; idx < 3 ; idx += 1)
delay_[idx] = 0;
}
PDelays::~PDelays()
{
if (delete_flag_) {
for (unsigned idx = 0 ; idx < 3 ; idx += 1)
delete delay_[idx];
}
}
void PDelays::set_delay(PExpr*del)
{
assert(del);
assert(delay_[0] == 0);
delay_[0] = del;
delete_flag_ = true;
}
void PDelays::set_delays(const list<PExpr*>*del, bool df)
{
assert(del);
assert(del->size() <= 3);
list<PExpr*>::const_iterator cur = del->begin();
for (unsigned idx = 0 ; cur != del->end() ; idx += 1, ++cur)
delay_[idx] = *cur;
delete_flag_ = df;
}
unsigned PDelays::delay_count() const
{
unsigned dly_cnt = 0;
for (unsigned idx = 0 ; idx < 3 ; idx += 1)
if (delay_[idx]) dly_cnt += 1;
return dly_cnt;
}
static NetExpr*calculate_val(Design*des, NetScope*scope, PExpr*expr)
{
NetExpr*dex = elab_and_eval(des, scope, expr, -1);
/* Print a warning if we find default and `timescale based
* delays in the design, since this is likely an error. */
if (scope->time_from_timescale()) dly_used_timescale = true;
else dly_used_no_timescale = true;
if (display_ts_dly_warning &&
dly_used_no_timescale && dly_used_timescale) {
cerr << "warning: Found both default and "
"`timescale based delays. Use" << endl;
cerr << " -Wtimescale to find the "
"module(s) with no `timescale." << endl;
display_ts_dly_warning = false;
}
/* If the delay expression is a real constant or vector
constant, then evaluate it, scale it to the local time
units, and return an adjusted value. */
if (NetECReal*tmp = dynamic_cast<NetECReal*>(dex)) {
uint64_t delay = get_scaled_time_from_real(des, scope, tmp);
delete tmp;
NetEConst*tmp2 = new NetEConst(verinum(delay, 64));
tmp2->set_line(*expr);
return tmp2;
}
if (NetEConst*tmp = dynamic_cast<NetEConst*>(dex)) {
verinum fn = tmp->value();
uint64_t delay = des->scale_to_precision(fn.as_ulong64(), scope);
delete tmp;
NetEConst*tmp2 = new NetEConst(verinum(delay, 64));
tmp2->set_line(*expr);
return tmp2;
}
/* Oops, cannot evaluate down to a constant. */
return dex;
}
static NetExpr* make_delay_nets(Design*des, NetScope*scope, NetExpr*expr)
{
if (expr == 0)
return 0;
if (dynamic_cast<NetESignal*> (expr))
return expr;
if (dynamic_cast<NetEConst*> (expr))
return expr;
NetNet*sig = expr->synthesize(des, scope, expr);
if (sig == 0) {
cerr << expr->get_fileline() << ": error: Expression " << *expr
<< " is not suitable as a delay expression." << endl;
des->errors += 1;
return 0;
}
expr = new NetESignal(sig);
return expr;
}
static NetExpr* calc_decay_time(NetExpr *rise, NetExpr *fall)
{
NetEConst *c_rise = dynamic_cast<NetEConst*>(rise);
NetEConst *c_fall = dynamic_cast<NetEConst*>(fall);
if (c_rise && c_fall) {
if (c_rise->value() < c_fall->value()) return rise;
else return fall;
}
return 0;
}
void PDelays::eval_delays(Design*des, NetScope*scope,
NetExpr*&rise_time,
NetExpr*&fall_time,
NetExpr*&decay_time,
bool as_nets_flag) const
{
assert(scope);
if (delay_[0]) {
rise_time = calculate_val(des, scope, delay_[0]);
if (as_nets_flag)
rise_time = make_delay_nets(des, scope, rise_time);
if (delay_[1]) {
fall_time = calculate_val(des, scope, delay_[1]);
if (as_nets_flag)
fall_time = make_delay_nets(des, scope, fall_time);
if (delay_[2]) {
decay_time = calculate_val(des, scope, delay_[2]);
if (as_nets_flag)
decay_time = make_delay_nets(des, scope,
decay_time);
} else {
// If this is zero then we need to do the min()
// at run time.
decay_time = calc_decay_time(rise_time, fall_time);
}
} else {
assert(delay_[2] == 0);
fall_time = rise_time;
decay_time = rise_time;
}
} else {
rise_time = 0;
fall_time = 0;
decay_time = 0;
}
}