-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathelectrodynamics.tex
160 lines (137 loc) · 4.9 KB
/
electrodynamics.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
% Electrodynamics Flashcards
% copyright 2006 Jason Underdown
\documentclass[avery5371,grid]{flashcards}
\cardfrontstyle[\large\slshape]{headings}
\cardbackstyle{empty}
\usepackage{amsmath}
\def\lim{\mathop{\rm lim}}
\newcommand{\xhat}[0]{\mathbf{\hat x}}
\newcommand{\yhat}[0]{\mathbf{\hat y}}
\newcommand{\zhat}[0]{\mathbf{\hat z}}
\begin{document}
\cardfrontfoot{Electrodynamics}
\begin{flashcard}[Copyright \& License]{Copyright \copyright \, 2007 Jason Underdown \\
Some rights reserved.}
\vspace*{\stretch{1}}
These flashcards and the accompanying \LaTeX \, source code are licensed
under a Creative Commons Attribution--NonCommercial--ShareAlike 2.5 License.
For more information, see creativecommons.org. You can contact the author at:
\begin{center}
\begin{small}\tt jasonu [remove-this] at physics dot utah dot edu\end{small}
\end{center}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{gradient}
\vspace*{\stretch{1}}
The gradient $\nabla T$ points in the direction of maximum increase of the
function $T$.
\medskip
\begin{displaymath}
\nabla T \equiv \xhat \frac{\partial T}{\partial x} +
\yhat \frac{\partial T}{\partial y} +
\zhat \frac{\partial T}{\partial z}
\end{displaymath}
\medskip
The magnitude $|\nabla T|$ is the slope along this direction.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{the vector operator $\nabla$}
\vspace*{\stretch{1}}
\begin{displaymath}
\nabla \equiv \xhat \frac{\partial}{\partial x} +
\yhat \frac{\partial}{\partial y} +
\zhat \frac{\partial}{\partial z}
\end{displaymath}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{divergence}
\vspace*{\stretch{1}}
\begin{eqnarray*}
\nabla \cdot \mathbf v &=& (\xhat \frac{\partial}{\partial x} +
\yhat \frac{\partial}{\partial y} +
\zhat \frac{\partial}{\partial z}) \cdot
(v_x \xhat + v_y \yhat + v_z \zhat)\\
&=& \frac{\partial v_x}{\partial x} +
\frac{\partial v_y}{\partial y} +
\frac{\partial v_z}{\partial z}
\end{eqnarray*}
The \textit{divergence} is a measure of how much the vector function
$\mathbf v$ spreads out from the point in question.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{curl}
\vspace*{\stretch{1}}
\begin{displaymath}
\nabla \times \mathbf v =
\begin{vmatrix}
\xhat & \yhat & \zhat\\
\frac{\partial}{\partial x} &
\frac{\partial}{\partial y} &
\frac{\partial}{\partial z}\\
v_x & v_y & v_z
\end{vmatrix}
\end{displaymath}
The \textit{curl} is a measure of how much the vector field ``curls around''
the point in question.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{5 species of second derivatives}
\vspace*{\stretch{1}}
\begin{small}
By applying $\nabla$ twice we can construct five species of second derivatives.
\begin{enumerate}
\item divergence of a gradient $\nabla \cdot (\nabla T) = \nabla^2$ (Laplacian)
\item curl of a gradient $\nabla \times (\nabla T) = 0$ (always)
\item gradient of a divergence $\nabla(\nabla \cdot \mathbf v)$ (seldom occurs)
\item divergence of a curl $\nabla \cdot (\nabla \times \mathbf v) = 0$ (always)
\item curl of a curl $\nabla \times (\nabla \times \mathbf v) =
\nabla(\nabla \cdot \mathbf v) - \nabla^2 \mathbf v$
\end{enumerate}
\end{small}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{curl--less or irrotational fields}
\vspace*{\stretch{1}}
For a given vector field $\mathbf F$ the following statements are equivalent, i.e. each implies the others.
\begin{enumerate}
\item $\nabla \times \mathbf F = 0$ everywhere
\item $\int_{\mathbf a}^{\mathbf b} \mathbf F \cdot d \mathbf l$ is path independent
\item $\oint \mathbf F \cdot d \mathbf l = 0$ on any closed loop
\item $\mathbf F = -\nabla V$ for some scalar potential $V$
\end{enumerate}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{divergence--less or solenoidal fields}
\vspace*{\stretch{1}}
For a given vector field $\mathbf F$ the following statements are equivalent, i.e. each implies the others.
\begin{enumerate}
\item $\nabla \cdot \mathbf F = 0$ everywhere
\item $\int \mathbf F \cdot d \mathbf a$ is independent of surface
\item $\oint \mathbf F \cdot d \mathbf a = 0$ over any closed surface
\item $\mathbf F = \nabla \times \mathbf A$ for some vector potential $\mathbf A$
\end{enumerate}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{gradient theorem}
\vspace*{\stretch{1}}
\begin{displaymath}
\int_{\mathbf{a}}^{\mathbf{b}} (\nabla f) \cdot d \mathbf{l} =
f(\mathbf{b}) - f(\mathbf{a})
\end{displaymath}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Green's theorem}
\vspace*{\stretch{1}}
\begin{displaymath}
\int (\nabla \cdot \mathbf{A}) dV = \oint \mathbf A \cdot d \mathbf a
\end{displaymath}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Stokes' theorem}
\vspace*{\stretch{1}}
\begin{displaymath}
\int (\nabla \times \mathbf A) \cdot d\mathbf a = \oint \mathbf A \cdot d \mathbf l
\end{displaymath}
\vspace*{\stretch{1}}
\end{flashcard}
\end{document}