-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathodes.tex
570 lines (448 loc) · 15.3 KB
/
odes.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
\documentclass[avery5371,grid]{flashcards}
%% Packages
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{ccicons}
\usepackage[mathscr]{euscript}
\usepackage{hyperref}
\usepackage{url}
\hypersetup{
pdftitle={Differential Equations and Linear Algebra Flash Cards},
pdfsubject={Math},
pdfauthor={Jason Underdown},
pdfkeywords={differential equations, linear algebra}
}
%% Math macros
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\B}{\mathscr{B}}
\newcommand{\st}{\textrm{ such that }}
%\renewcommand{\le}{\leqslant}
%\renewcommand{\theta}{\vartheta}
%\newcommand{\iso}{\cong}
\newcommand{\abs}[1]{\ensuremath{\left| #1 \right|}}
\newcommand{\set}[2]{\ensuremath{\left\{ #1 \, : \, #2 \right\}}}
%\newcommand{\presentation}[2]{\ensuremath{\left< #1 \, : \, #2 \right>}}
\newcommand{\normal}{\ensuremath{\lhd}}
\DeclareMathOperator{\Ker}{\ensuremath{\textrm{Ker}}}
\DeclareMathOperator{\Img}{\ensuremath{\textrm{Im}}}
%\DeclareMathOperator{\End}{\ensuremath{\textrm{End}}}
%% Text macros
\newcommand{\defn}[1]{\textbf{#1}}
%% Layout of flash cards
\cardfrontstyle[\large\slshape]{headings}
\cardbackstyle{empty}
\cardfrontfoot{ODEs and Linear Algebra}
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{flashcard}[Copying]
{ Flash Cards for Math 2250
\begin{center}
``Differential Equations and Linear Algebra''
\end{center}
}
\vspace*{\stretch{1}}
\copyright\ 2017 Jason Underdown \\ \\
This work is licensed under a \\
Creative Commons Attribution 4.0 \\
International License \\
\ccby \\ \\
\url{https://creativecommons.org/licenses/by/4.0/}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{order}
\vspace*{\stretch{1}}
The \defn{order} of a differential equation (DE) is the order of the
highest derivative which occurs in the equation.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{ODE and PDE}
\vspace*{\stretch{1}}
An \defn{ODE} (ordinary differential equation) is a DE that only
contains total derivatives.
\bigskip
A \defn{PDE} (partial differential equation) is a DE which contains
at least one partial derivative.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{directly integrable}
\vspace*{\stretch{1}}
The DE, $y' = F(x,y)$, is \defn{directly integrable} if
\[
F(x,y)=f(x).
\]
Such an equation may be solved by computing:
\[
y(x) = \int f(x) \, dx.
\]
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{general solution}
\vspace*{\stretch{1}}
A \defn{general solution} to a DE is any continuous function which
satisfies the DE and contains at least one constant of integration.
\bigskip
A general solution is actually a collection or \emph{family} of
functions parametrized by the integration constant(s).
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{initial value problem \\(IVP)}
\vspace*{\stretch{1}}
An \defn{initial value problem} or \defn{IVP} is a differential
equation coupled with at least one initial condition, for example,
\[
y' = F(x,y) \qquad y(0) = y_0.
\]
A second order IVP will require two initial conditions, $y(0)=y_0$
and $y'(0)=v_0$. In general, an $n$th order IVP will require $n$
initial conditions.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{particular solution}
\vspace*{\stretch{1}}
A \defn{particular solution} is a solution to an IVP. In other words
it is a single function which satisfies both the DE and any initial
condition(s).
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Algorithm]{slope field plot}
\vspace*{\stretch{1}}
Given a first--order DE, $y' = F(x,y)$, one can graphically
approximate solutions to the DE by generating a \defn{slope field
plot}:
\begin{enumerate}
\item Divide a region of the $xy$--plane into a grid.
\item For each cell in the grid compute $m = F(\bar{x}, \bar{y})$,
where $(\bar{x}, \bar{y})$ is the midpoint of the cell, and plot a
small bar with slope $m$ centered on the point
$(\bar{x}, \bar{y})$.
\end{enumerate}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{existence}
\vspace*{\stretch{1}}
\begin{equation}
\label{eq:first-order-ivp}
y' = F(x,y) \qquad y(a) = b
\end{equation}
\textbf{If} $F(x,y)$ is continuous on some rectangle $R$ containing
the point $(a,b)$ in its interior, \textbf{then} there exists an
open interval $I$ which contains $a$ such that
\eqref{eq:first-order-ivp} has a solution on $I$. Note that the
width of $I$ may be shorter than the width of $R$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{uniqueness}
\vspace*{\stretch{1}}
\begin{equation}
\tag{\ref{eq:first-order-ivp}}
y' = F(x,y) \qquad y(a) = b
\end{equation}
\textbf{If} $F(x,y)$ and $F_y(x,y)$ are both continuous on some
rectangle $R$ containing the point $(a,b)$ in its interior,
\textbf{then} there exists an open interval $I$ which contains $a$
such that \eqref{eq:first-order-ivp} has a \emph{unique} solution on
$I$. Note that the width of $I$ may be shorter than the width of
$R$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{separable}
\vspace*{\stretch{1}}
The DE $y' = F(x,y)$ is called \defn{separable} if the right hand
side function can be expressed as a product of two single variable
functions, for example,
\[
F(x,y) = f(x)g(y).
\]
Such equations may be solved by ``separating the variables'', that
is, computing:
\[
\int \frac{1}{g(y)} \, dy = \int f(x) \, dx.
\]
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{population model}
\vspace*{\stretch{1}}
The \defn{population model} describes exponential growth and decay. It
is an IVP:
\[
P' = kP \qquad P(0) = P_0.
\]
This model has particular solution:
\[
P(t) = P_0 e^{kt}.
\]
Using the particular solution to extrapolate values may not be
reasonable because exponential growth is often unphysical
(impossible) over a long time scale.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{diffusion model \\ (Newton cooling and heating)}
\vspace*{\stretch{1}}
The \defn{diffusion model} describes how something diffuses or
spreads into its \emph{ambient} environment.
\[
y' = k(A-y) \qquad y(0) = y_0
\]
This model has solution,
\[
y(t) = A - Ce^{-kt} \qquad C = A-y_0.
\]
Do not try to memorize the solution! Solve the model via separation
of variables.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{linear DE}
\vspace*{\stretch{1}}
An ODE is \defn{linear} if it can be written in the form:
\[
a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y' + a_0(x)y
= f(x).
\]
Example of first and second order, \emph{linear} ODEs:
\begin{align*}
a_1(x)y' + a_0(x)y &= f(x) \\
a_2(x)y'' + a_1(x)y' + a_0(x)y &= f(x)
\end{align*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{integrating factor}
\vspace*{\stretch{1}}
Given a linear, first order ODE:
\[
a_1(x)y' + a_0(x)y = f(x),
\]
first divide by $a_1(x)$ to yield:
\[
y' + p(x)y = q(x).
\]
The \defn{integrating factor} is: \( I(x) = e^{\int \! p(x) dx}. \)
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Algorithm]{integrating factor method}
\vspace*{\stretch{1}}
\begin{enumerate}
\item Put in standard form:
\(
y' + p(x)y = q(x).
\)
\item Multiply both sides by $I(x) = e^{\int\! p(x)dx}$, \\
and integrate:
\(
y I(x) = \displaystyle \int q(x)I(x) \, dx
\)
\item
\(
y = \displaystyle e^{-\int\! p(x) dx}
\left[ \int \left( q(x)e^{\int \!p(x) dx} \right)\, dx \right]
\)
Don't forget the $+C$ when integrating!
\end{enumerate}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{autonomous}
\vspace*{\stretch{1}}
The DE $y' = F(x,y)$ is called \defn{autonomous} if $F(x,y)$ is just
a function of the dependent variable $y$, that is if:
\[
F(x,y) = g(y).
\]
Such equations can be analyzed by finding the roots of the equation
$g(y)=0$ and then creating a phase diagram.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Algorith]{Euler's method}
\vspace*{\stretch{1}}
Given the IVP: \( \: \frac{dy}{dt} = f(t,y) \quad y(t_0) = y_0 \)
\smallskip
Choose a step size, $h$ and the number of steps, $n$ and repeat the
following loop $n$ times.
\begin{align*}
t_{i+1} &= t_i + \underbrace{h}_{\Delta t} \\
y_{i+1} &= y_i + \underbrace{h \cdot f(t_i, y_i)}_{\Delta y}
\end{align*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{elementary row operations}
\vspace*{\stretch{1}}
The three \defn{elementary row operations} that can be performed on
any matrix $A$ are:
\begin{enumerate}
\item Multiply any row of $A$ by a nonzero scalar.
\item Interchange (swap) any two rows of $A$.
\item Add a scalar multiple of one row of $A$ to another row.
\end{enumerate}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{row equivalent matrices}
\vspace*{\stretch{1}}
Two matrices are called \defn{row equivalent} if one can be obtained
from the other by a finite sequence of elementary row operations.
\medskip
If the two matrices $A$ and $B$ are row equivalent we write,
$A \sim B$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[\S 3.2 Theorem 1]{equivalent systems and equivalent
matrices}
\vspace*{\stretch{1}}
If the augmented coefficient matrices of two linear systems are row
equivalent, then the two systems have the same solution set.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{row echelon form (REF)}
\vspace*{\stretch{1}}
The matrix $A$ is in \defn{row echelon form} if:
\begin{enumerate}
\item Every row of $A$ that consists of all zeros lies beneath ever
other row that contains a nonzero element.
\item In each row of $A$ that contains a nonzero element, the first
nonzero element lies strictly to the right of the first nonzero
element in the preceding row (if any).
\end{enumerate}
\vspace*{\stretch{1}}
\end{flashcard}
% \begin{flashcard}[Definition]{vector space}
% \vspace*{\stretch{1}}
% A \defn{vector space} over a field $F$ is a set $V$, equipped with
% addition and scalar multiplication satisfying:
% \begin{enumerate}
% \item $V$ is an abelian group under addition;
% \item $\forall \, u,v \in V$ and $\forall \, \lambda, \mu \in F$,
% \begin{enumerate}
% \item $\lambda(u + v) = \lambda u + \lambda v$
% \item $(\lambda + \mu)v = \lambda v + \mu v$
% \item $(\lambda \mu) v = \lambda (\mu v)$
% \item $1 v = v$
% \end{enumerate}
% \end{enumerate}
% \vspace*{\stretch{1}}
% \end{flashcard}
% \begin{flashcard}[Definition]{linear dependence / linear independence}
% \vspace*{\stretch{1}}
% We say that $v_1, \ldots, v_n$ are \defn{linearly dependent} if
% \[
% \lambda_1 v_1 + \cdots + \lambda_n v_n = 0
% \]
% for some $\lambda_1, \ldots, \lambda_n \in F$ not all zero,
% otherwise the vectors $v_1, \ldots, v_n$ are \defn{linearly
% independent}. \vspace*{\stretch{1}}
% \end{flashcard}
% \begin{flashcard}[Definition]{linear combination / span}
% \vspace*{\stretch{1}}
% Let $v_1, \ldots, v_n$ be vectors in a vector space $V$ over $F$. A
% vector $v$ in $V$ is a \defn{linear combination} of
% $v_1, \ldots, v_n$ if
% \[
% v = \lambda_1 v_1 + \cdots + \lambda_n v_n
% \]
% for some $\lambda_1, \ldots, \lambda_n \in F$.
% \vfill
% The vectors $v_1, \ldots, v_n$ \defn{span} $V$ if every vector in
% $V$ is a linear combination of $v_1, \ldots, v_n$.
% \vspace*{\stretch{1}}
% \end{flashcard}
% \begin{flashcard}[Definition]{basis}
% \vspace*{\stretch{1}}
% The vectors $v_1, \ldots , v_n \in V$ form a \defn{basis} of V if
% they
% \begin{enumerate}
% \item \emph{span} V, and are
% \item \emph{linearly independent}.
% \end{enumerate}
% \vspace*{\stretch{1}}
% \end{flashcard}
% \begin{flashcard}[Definition/Theorem]{subspace / conditions for a subspace}
% \vspace*{\stretch{1}}
% A \defn{subspace} of a vector space $V$ over $F$ is a subset of $V$
% which is itself a vector space under the operations inherited from
% $V$.
% \vfill
% A subset $U$ of a vector space $V$ is a subspace iff
% \begin{enumerate}
% \item $0\in U$;
% \item if $u,v \in U$ then $u+v \in U$;
% \item if $\lambda \in F$ and $u \in U$ then $\lambda u \in U$.
% \end{enumerate}
% \vspace*{\stretch{1}}
% \end{flashcard}
% \begin{flashcard}[Definition]{linear transformation}
% \vspace*{\stretch{1}}
% Let $V$ and $W$ be vector spaces over $F$. A \defn{linear
% transformation} from $V$ to $W$ is a function
% \[
% \theta : V \to W
% \]
% which satisfies
% \begin{enumerate}
% \item $(u + v)\theta = u\theta + v\theta$ for all $u,v \in V$, and
% \item $(\lambda u)\theta = \lambda (v\theta)$ for all
% $\lambda \in F$ and $v \in V$.
% \end{enumerate}
% \vspace*{\stretch{1}}
% \end{flashcard}
% \begin{flashcard}[Theorem]{rank--nullity theorem}
% \vspace*{\stretch{1}}
% Suppose $V$ and $W$ are vector spaces and
% \[
% \theta : V \to W
% \]
% is a linear transformation, then
% \[
% \dim V = \dim(\Ker \theta) + \dim(\Img \theta)
% \]
% \vspace*{\stretch{1}}
% \end{flashcard}
% \begin{flashcard}[Theorem]{invertibility of linear transformations}
% \vspace*{\stretch{1}}
% Let $\theta$ be a linear transformation from $V$ to itself, then the
% following conditions are equivalent:
% \begin{enumerate}
% \item $\theta$ is invertible,
% \item $\Ker \theta = \{ 0 \}$,
% \item $\Img \theta = V$.
% \end{enumerate}
% \vspace*{\stretch{1}}
% \end{flashcard}
% \begin{flashcard}[Definition]{matrix of an endomorphism \\ $[\theta ]_{\B}$}
% \vspace*{\stretch{1}}
% Let $V$ be a vector space over $F$, and let $\theta$ be an
% endomorphism of $V$. Once a basis $\B = \{ v_1, \ldots, v_n \}$ for
% $V$ is chosen, then there are $n^2$ scalars
% $a_{ij} \in F \; (1 \le i,j \le n)$ such that for all $i$:
% \[
% v_i \theta = a_{i1}v_1 + \cdots + a_{in}v_n.
% \]
% The $n\times n$ matrix $(a_{ij})$ is called the \defn{matrix of
% $\theta$ relative to the basis $\B$}, and is denoted by
% $[\theta ]_{\B}$.
% \vspace*{\stretch{1}}
% \end{flashcard}
% \begin{flashcard}[Definition]{change of basis matrix}
% \vspace*{\stretch{1}}
% Let $\B = \{v_1, \ldots, v_n \}$ be a basis of the vector space V,
% and let $\B' = \{v'_1, \ldots, v'_n \}$ be another basis of $V$.
% Then for $1 \le i \le n$,
% \[
% v'_i = t_{i1} v_1 + \cdots + t_{in} v_n
% \]
% for certain scalars $t_{ij}$. The $n\times n$ matrix $T=(t_{ij})$ is
% invertible and is called the \defn{change of basis matrix} from $\B$
% to $\B'$.
% \vspace*{\stretch{1}}
% \end{flashcard}
% \begin{flashcard}[Theorem]{change of basis}
% \vspace*{\stretch{1}}
% If $\B$ and $\B'$ are bases of $V$ and $\theta$ is an endomorphism
% of $V$, then
% \[
% [\theta]_{\B} = T^{-1}[\theta]_{\B'}T,
% \]
% where $T$ is the change of basis matrix from $\B$ to $\B'$.
% \vspace*{\stretch{1}}
% \end{flashcard}
\end{document}