-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathquantum-mechanics.tex
75 lines (63 loc) · 2.13 KB
/
quantum-mechanics.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
% Quantum Mechanics Flashcards
% Copyright 2007 Jason Underdown
\documentclass[avery5371,grid]{flashcards}
\usepackage[latin1]{inputenc}
\usepackage{amsfonts}
\usepackage{amsmath}
\cardfrontstyle[\large\slshape]{headings}
\cardbackstyle{empty}
\begin{document}
\cardfrontfoot{Quantum Mechanics}
\begin{flashcard}[Copyright \& License]{Copyright \copyright \, 2007 Jason Underdown \\
Some rights reserved.}
\vspace*{\stretch{1}}
These flashcards and the accompanying \LaTeX \, source code are licensed
under a Creative Commons Attribution--NonCommercial--ShareAlike 2.5 License.
For more information, see creativecommons.org. You can contact the author at:
\begin{center}
\begin{small}\tt jasonu [remove-this] at physics dot utah dot edu\end{small}
\end{center}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Equation]{Schr\"odinger equation\\non-operator form}
\vspace*{\stretch{1}}
\begin{displaymath}
i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m}
\frac{\partial^2 \Psi}{\partial x^2} + V \Psi
\end{displaymath}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{statistical interpretation of the wave function}
\vspace*{\stretch{1}}
\begin{displaymath}
\int_a^b |\Psi(x,t)|^2 dx =
\framebox[4.5cm]{\parbox[c]{4cm}{probability of finding the particle
between $a$ and $b$, at time $t$}}
\end{displaymath}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Formula]{Euler's formula}
\vspace*{\stretch{1}}
\begin{displaymath}
e^{i\theta} = \cos \theta + i\sin \theta
\end{displaymath}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Equation]{time--independent Schr\"odinger equation}
\vspace*{\stretch{1}}
The simplest way to write the time--independent Schr\"odinger equation is
$H\psi = E\psi$, however, with the Hamiltonian operator expanded it becomes:
\medskip
\begin{displaymath}
-\frac{\hbar^2}{2m} \frac{d^2 \psi}{dx^2} + V\psi = E\psi\\
\end{displaymath}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{Hamiltonian operator}
\vspace*{\stretch{1}}
\begin{displaymath}
\textrm{\^H} = -\frac{\hbar^2}{2m}\nabla^2 + V
\end{displaymath}
\vspace*{\stretch{1}}
\end{flashcard}
\end{document}