-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy paththermodynamics.tex
142 lines (128 loc) · 3.51 KB
/
thermodynamics.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
\documentclass[avery5371,grid]{flashcards}
\newcommand{\deriv}[2]{\frac{\mathrm{d}#1}{\mathrm{d}#2}}
\newcommand{\pderiv}[2]{\frac{\partial#1}{\partial#2}}
\newcommand{\dQ}[0]{d^{\prime}\!Q}
\newcommand{\dW}[0]{d^{\prime}\!W}
\cardfrontstyle[\large\slshape]{headings}
\cardbackstyle{empty}
\begin{document}
\cardfrontfoot{Thermodynamics}
\begin{flashcard}[Equation]{Ideal Gas Law}
\vspace*{\stretch{1}}
\begin{center}
\begin{displaymath}
Pv = nRT
\end{displaymath}
\end{center}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Equation]{Van der Waals Equation}
\vspace*{\stretch{1}}
\begin{center}
\begin{displaymath}
\left(P+\frac{a}{v^2}\right)\left(v-b\right) = RT
\end{displaymath}
\end{center}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{Coefficient of Volume Expansion\\$\beta$}
\vspace*{\stretch{1}}
\begin{center}
\begin{displaymath}
\beta = \frac{1}{V}{\left(\pderiv{V}{T}\right)}_P
\end{displaymath}
\end{center}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{Isothermal Compressibility\\$\kappa$}
\vspace*{\stretch{1}}
\begin{center}
\begin{displaymath}
\kappa= -\frac{1}{V}\left(\pderiv{V}{P}\right)_T
\end{displaymath}
\end{center}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Equation]{Volume Differential\\$dV$}
\vspace*{\stretch{1}}
\begin{center}
\begin{displaymath}
dV = {\left(\pderiv{V}{T}\right)}_P\!\!dT + {\left(\pderiv{V}{P}\right)}_T\!\!dP
\end{displaymath}
\end{center}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{Exact Differential}
\vspace*{\stretch{1}}
\begin{tiny}
The following two properties are equivalent ways of determining exactness:\\
1. Mixed second order partial derivatives are equal e.g.:
\begin{displaymath}
\frac{\partial^2 V}{\partial P \partial T} =
\frac{\partial^2 V}{\partial T \partial P}
\end{displaymath}
2. Integral is independent of path
\begin{displaymath}
\int_{V_1}^{V_2} dV = V_1 - V_2 \qquad \oint dV = 0
\end{displaymath}
A quantity whose differential is \emph{not} exact is not a thermodynamic property.
\end{tiny}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Law]{First Law of Thermodynamics}
\vspace*{\stretch{1}}
\begin{center}
\begin{displaymath}
\begin{array}{ll}
\Delta U = & Q - W\\
& \\
dU = &\dQ - \dW
\end{array}
\end{displaymath}
\medskip
(Where the primes denote inexact differentials)
\end{center}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{Enthalpy}
\vspace*{\stretch{1}}
\begin{center}
\begin{displaymath}
H = U + PV
\end{displaymath}
\end{center}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{Heat Capacity}
\vspace*{\stretch{1}}
\begin{center}
\begin{displaymath}
C = \lim_{\Delta T\to0} \frac{Q}{\Delta T} = \frac{\dQ}{dT}
\end{displaymath}
\begin{displaymath}
Q = C(T_2 - T_1) = nc(T_2 - T_1)
\end{displaymath}
\end{center}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Equation]{Thermodynamic Potentials}
\vspace*{\stretch{1}}
\begin{center}
\begin{tabular}{rc}
& \begin{math}-TS\end{math} \\
& \begin{math}\longrightarrow\end{math} \\
\begin{math}+PV \downarrow\end{math} &
{
\begin{tabular}{|c|c|}
\hline
U & F \\
\hline
H & G \\
\hline
\end{tabular}
} \\
\end{tabular}
\end{center}
\vspace*{\stretch{1}}
\end{flashcard}
\end{document}