forked from MRSRL/dl-cs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
recon_run.py
382 lines (329 loc) · 14.7 KB
/
recon_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
"""Runs model on data input"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import argparse
import time
import numpy as np
import tensorflow as tf
import sigpy.mri
from tqdm import tqdm
from matplotlib import pyplot
import model
import data
from utils import mri
from utils import fftc
from utils import tfmri
import utils.logging
logger = utils.logging.logger
class DeepRecon:
def __init__(self,
model_dir,
num_channels,
shape_z,
shape_y,
shape_scale=5,
num_maps=1,
batch_size=1,
tf_graph=None,
tf_sess=None,
debug_plot=False):
"""
Setup model for inference
Args:
model_dir: Directory with model files
num_channels: Number of channels for input data
shape_z: Shape of input data in Z
shape_y: Shape of input data in Y
shape_scale: Scale data with center k-space data
num_maps: Number of sets of sensitivity maps
"""
self.debug_plot = debug_plot
self.tf_graph = tf_graph
if self.tf_graph is None:
self.tf_graph = tf.Graph()
self.tf_sess = tf_sess
if self.tf_sess is None:
session_config = tf.ConfigProto()
session_config.gpu_options.allow_growth = True # pylint: disable=E1101
session_config.allow_soft_placement = True
self.tf_sess = tf.Session(
graph=self.tf_graph, config=session_config)
params = model.load_params(model_dir)
with self.tf_graph.as_default():
self.batch_size = batch_size
self.tf_kspace_input = tf.placeholder(
tf.complex64,
(self.batch_size, shape_z, shape_y, num_channels))
self.tf_sensemap_input = tf.placeholder(
tf.complex64,
(self.batch_size, shape_z, shape_y, num_maps, num_channels))
if shape_scale > 0:
scale = tf.image.resize_image_with_crop_or_pad(
self.tf_kspace_input, shape_scale, shape_scale)
scale = tf.reduce_mean(tf.square(tf.abs(scale)))
scale *= shape_scale * shape_scale / shape_y / shape_z
else:
logger.info('Turning off scaling...')
scale = 1.0
scale = tf.cast(1.0 / tf.sqrt(scale), dtype=tf.complex64)
tf_kspace_input_scaled = self.tf_kspace_input * scale
tf_image_output_scaled, tf_kspace_output_scaled, self.iter_out = model.unrolled_prox(
tf_kspace_input_scaled,
self.tf_sensemap_input,
num_grad_steps=params['unrolled_steps'],
resblock_num_features=params['unrolled_num_features'],
resblock_num_blocks=params['unrolled_num_resblocks'],
resblock_share=params['unrolled_share'],
training=False,
hard_projection=params['hard_projection'],
scope=params['recon_scope'])
self.tf_image_output = tf_image_output_scaled / scale
self.tf_kspace_output = tf_kspace_output_scaled / scale
if params['loss_adv'] > 0:
adv_scope = 'Adversarial'
tf_image_input_scaled = tfmri.model_transpose(
tf_kspace_input_scaled, self.tf_sensemap_input)
self.adv_output = model.adversarial(
tf_image_input_scaled, training=False, scope=adv_scope)
else:
self.adv_output = None
filename_latest_model = tf.train.latest_checkpoint(model_dir)
logger.info('Loading model ({})...'.format(filename_latest_model))
saver = tf.train.Saver()
saver.restore(self.tf_sess, filename_latest_model)
def run(self, kspace, sensemap):
"""
Run inference on dataset
Args
kspace: (channels, kz, ky, x)
sensemap: (maps, channels, z, y, x)
"""
logger.info('IFFT in x...')
kspace_input = fftc.ifftc(kspace, axis=-1)
# (channels, kz, ky, x) to (x, kz, ky, channels)
kspace_input = np.transpose(kspace_input, (3, 1, 2, 0))
kspace_output = np.zeros(kspace_input.shape, dtype=np.complex64)
if self.debug_plot:
image_input = fftc.ifftc(fftc.ifftc(kspace_input, axis=1), axis=2)
image_input = mri.sumofsq(image_input, axis=-1)
image_output = np.zeros(image_input.shape, dtype=np.float64)
# tranpose to (x, kz, ky, maps, channels)
sensemap_input = np.transpose(sensemap, (4, 2, 3, 0, 1))
num_x = kspace_input.shape[0]
num_batches = int(np.ceil(1.0 * num_x / self.batch_size))
logger.info('Running inference ({} batches)...'.format(num_batches))
def wrap(x):
return x
if logger.getEffectiveLevel() is utils.logging.logging.INFO:
wrap = tqdm
time_start = time.time()
for b in wrap(range(num_batches)):
x_start = b * self.batch_size
x_end = (b + 1) * self.batch_size
logger.debug(' batch {}/{}: ({}, {})'.format(
b, num_batches, x_start, x_end))
kspace_input_batch = kspace_input[x_start:x_end, :, :, :].copy()
sensemap_input_batch = sensemap_input[x_start:x_end, :, :, :]
x_act_end = kspace_input_batch.shape[0] + x_start
if x_end != x_act_end:
pad = x_end - x_act_end
zeropad = np.zeros((pad, ) + kspace_input_batch.shape[1:],
np.complex64)
kspace_input_batch = np.concatenate(
(kspace_input_batch, zeropad), axis=0)
zeropad = np.zeros((pad, ) + sensemap_input_batch.shape[1:],
np.complex64)
sensemap_input_batch = np.concatenate(
(sensemap_input_batch, zeropad), axis=0)
feed_dict = {
self.tf_kspace_input: kspace_input_batch,
self.tf_sensemap_input: sensemap_input_batch
}
out = self.tf_sess.run([self.tf_kspace_output],
feed_dict=feed_dict)[0]
kspace_output[x_start:x_act_end, :, :, :] = out
if self.debug_plot:
imout = fftc.ifftc(fftc.ifftc(out, axis=1), axis=2)
imout = mri.sumofsq(imout, axis=-1)
image_output[x_start:x_act_end, :, :] = imout
image_axial_disp = np.concatenate(
(image_input[x_start, :, :], image_output[x_start, :, :]),
axis=1)
image_sag_disp = np.concatenate(
(image_input[:, :, image_input.shape[-1] // 2],
image_output[:, :, image_output.shape[-1] // 2]),
axis=1)
pyplot.figure(1)
pyplot.subplot(2, 1, 1)
pyplot.imshow(image_axial_disp, cmap='gray')
pyplot.axis('off')
pyplot.title('Processed: {}/{}'.format(b, num_batches))
pyplot.subplot(2, 1, 2)
pyplot.imshow(image_sag_disp, cmap='gray')
pyplot.axis('off')
pyplot.pause(0.01)
time_end = time.time()
time_total = time_end - time_start
logger.info('Timer: ')
logger.info(' Per slice: {} s'.format(
time_total / num_batches / self.batch_size))
logger.info(' Per batch: {} s'.format(time_total / num_batches))
logger.info(' Total: {} s'.format(time_total))
# (x, kz, ky, channels) to (channels, kz, ky, x)
kspace_output = np.transpose(kspace_output, (3, 1, 2, 0))
logger.info('FFT in x...')
kspace_output = fftc.fftc(kspace_output, axis=-1)
return kspace_output
def has_adv(self):
return self.adv_output is not None
def run_adv(self, kspace, sensemap):
"""
Run inference on dataset
Args
kspace: (channels, kz, ky, x)
sensemap: (maps, channels, z, y, x)
"""
if self.adv_output is None:
logger.warning('No Adversarial network with model')
return None
logger.info('IFFT in x...')
kspace_input = fftc.ifftc(kspace, axis=-1)
# (channels, kz, ky, x) to (x, kz, ky, channels)
kspace_input = np.transpose(kspace_input, (3, 1, 2, 0))
adv_output = None
if self.debug_plot:
image_input = fftc.ifftc(fftc.ifftc(kspace_input, axis=1), axis=2)
image_input = mri.sumofsq(image_input, axis=-1)
image_output = np.zeros(image_input.shape, dtype=np.float64)
# tranpose to (x, kz, ky, maps, channels)
sensemap_input = np.transpose(sensemap, (4, 2, 3, 0, 1))
num_x = kspace_input.shape[0]
num_batches = int(np.ceil(1.0 * num_x / self.batch_size))
logger.info('Running inference ({} batches)...'.format(num_batches))
def wrap(x):
return x
if logger.getEffectiveLevel() is utils.logging.logging.INFO:
wrap = tqdm
time_start = time.time()
for b in wrap(range(num_batches)):
x_start = b * self.batch_size
x_end = (b + 1) * self.batch_size
logger.debug(' batch {}/{}: ({}, {})'.format(
b, num_batches, x_start, x_end))
kspace_input_batch = kspace_input[x_start:x_end, :, :, :].copy()
sensemap_input_batch = sensemap_input[x_start:x_end, :, :, :]
x_act_end = kspace_input_batch.shape[0] + x_start
if x_end != x_act_end:
pad = x_end - x_act_end
zeropad = np.zeros((pad, ) + kspace_input_batch.shape[1:],
np.complex64)
kspace_input_batch = np.concatenate(
(kspace_input_batch, zeropad), axis=0)
zeropad = np.zeros((pad, ) + sensemap_input_batch.shape[1:],
np.complex64)
sensemap_input_batch = np.concatenate(
(sensemap_input_batch, zeropad), axis=0)
feed_dict = {
self.tf_kspace_input: kspace_input_batch,
self.tf_sensemap_input: sensemap_input_batch
}
out = self.tf_sess.run([self.adv_output], feed_dict=feed_dict)[0]
if adv_output is None:
adv_output = np.zeros(
(kspace_input.shape[0], ) + out.shape[1:], np.complex64)
adv_output[x_start:x_act_end, :, :, :] = out
if self.debug_plot:
imout = fftc.ifftc(fftc.ifftc(out, axis=1), axis=2)
imout = mri.sumofsq(imout, axis=-1)
image_output[x_start:x_act_end, :, :] = imout
image_axial_disp = np.concatenate(
(image_input[x_start, :, :] / np.max(image_input),
image_output[x_start, :, :]) / np.max(image_output),
axis=1)
image_sag_disp = np.concatenate(
(image_input[:, :, image_input.shape[-1] // 2] /
np.max(image_input),
image_output[:, :, image_output.shape[-1] // 2]) /
np.max(image_output),
axis=1)
pyplot.figure(1)
pyplot.subplot(2, 1, 1)
pyplot.imshow(image_axial_disp, cmap='gray')
pyplot.axis('off')
pyplot.title('Processed: {}/{}'.format(b, num_batches))
pyplot.subplot(2, 1, 2)
pyplot.imshow(image_sag_disp, cmap='gray')
pyplot.axis('off')
pyplot.pause(0.01)
time_end = time.time()
time_total = time_end - time_start
logger.info('Timer: ')
logger.info(' Per slice: {} s'.format(
time_total / num_batches / self.batch_size))
logger.info(' Per batch: {} s'.format(time_total / num_batches))
logger.info(' Total: {} s'.format(time_total))
# (x, kz, ky, channels) to (channels, kz, ky, x)
adv_output = np.transpose(adv_output, (3, 1, 2, 0))
return adv_output
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Run inference')
parser.add_argument(
'model_dir', action='store', help='Location of trained model')
parser.add_argument(
'kspace_input', action='store', help='npy file of kspace input data')
parser.add_argument(
'kspace_output', action='store', help='npy file of kspace output data')
parser.add_argument(
'--sensemap', default=None, help='Insert sensemap as npy')
parser.add_argument('--device', default='0', help='GPU device to use')
parser.add_argument(
'--batch_size', default=1, type=int, help='Batch size for inference')
parser.add_argument(
'--verbose',
action='store_true',
help='Verbose printing (default: False)')
parser.add_argument(
'--plot',
action='store_true',
help='Plotting for debugging (default: False)')
args = parser.parse_args()
log_level = utils.logging.logging.INFO if args.verbose else utils.logging.logging.WARNING
logger.setLevel(log_level)
os.environ['CUDA_VISIBLE_DEVICES'] = args.device
logger.info('Using GPU device {}...'.format(args.device))
logger.info('Loading k-space data from {}...'.format(args.kspace_input))
kspace = np.load(args.kspace_input)
sensemap = None
if args.sensemap and os.path.isfile(args.sensemap):
logger.info('Loading sensitivity maps from {}...'.format(
args.sensemap))
sensemap = np.load(args.sensemap)
else:
logger.info('Estimating sensitivity maps...')
sensemap = mri.estimate_sense_maps(kspace)
if args.sensemap:
logger.info(' Saving sensitivity maps to {}...'.format(
args.sensemap))
np.save(args.sensemap, sensemap)
sensemap = np.squeeze(sensemap)
if sensemap.ndim != 5:
# (maps, channels, z, y, x)
sensemap = np.expand_dims(sensemap, axis=0)
logger.info('Setting up model from {}...'.format(args.model_dir))
num_channels = kspace.shape[0]
shape_z = kspace.shape[1]
shape_y = kspace.shape[2]
model = DeepRecon(
args.model_dir,
num_channels,
shape_z,
shape_y,
batch_size=args.batch_size,
debug_plot=args.plot)
logger.info('Running inference...')
kspace_output = model.run(kspace, sensemap)
logger.info('Writing output to {}...'.format(args.kspace_output))
np.save(args.kspace_output, kspace_output)
logger.info('Finished')