-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathq2_gradcheck.py
85 lines (69 loc) · 2.73 KB
/
q2_gradcheck.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
import random
# First implement a gradient checker by filling in the following functions
def gradcheck_naive(f, x):
"""
Gradient check for a function f
- f should be a function that takes a single argument and outputs the cost and its gradients
- x is the point (numpy array) to check the gradient at
"""
rndstate = random.getstate()
random.setstate(rndstate)
fx, grad = f(x) # Evaluate function value at original point
h = 1e-4
# Iterate over all indexes in x
it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
ix = it.multi_index
### try modifying x[ix] with h defined above to compute numerical gradients
### make sure you call random.setstate(rndstate) before calling f(x) each time, this will make it
### possible to test cost functions with built in randomness later
### YOUR CODE HERE:
random.setstate(rndstate)
x_copy1 = np.copy(x)
x_copy1[ix] = x_copy1[ix]+h
f1, grad1 = f(x_copy1)
random.setstate(rndstate)
x_copy2 = np.copy(x)
x_copy2[ix] = x_copy2[ix]-h
f2, grad2 = f(x_copy2)
numgrad = (f1-f2)/(2*h)
### END YOUR CODE
# Compare gradients
reldiff = abs(numgrad - grad[ix]) / max(1, abs(numgrad), abs(grad[ix]))
if reldiff > 1e-5:
print "Gradient check failed."
print "First gradient error found at index %s" % str(ix)
print "Your gradient: %f \t Numerical gradient: %f" % (grad[ix], numgrad)
return
it.iternext() # Step to next dimension
print "Gradient check passed!"
def sanity_check():
"""
Some basic sanity checks.
"""
quad = lambda x: (np.sum(x ** 2), x * 2)
print "Running sanity checks..."
gradcheck_naive(quad, np.array(123.456)) # scalar test
gradcheck_naive(quad, np.random.randn(3,)) # 1-D test
gradcheck_naive(quad, np.random.randn(4,5)) # 2-D test
print ""
def your_sanity_checks():
"""
Use this space add any additional sanity checks by running:
python q2_gradcheck.py
This function will not be called by the autograder, nor will
your additional tests be graded.
"""
print "Running your sanity checks..."
### YOUR CODE HERE
quad = lambda x: (np.sum(x ** 3 + x ** 2), x * 2 + 3*x**2)
print "Running sanity checks..."
gradcheck_naive(quad, np.array(123.456)) # scalar test
gradcheck_naive(quad, np.random.randn(3,)) # 1-D test
gradcheck_naive(quad, np.random.randn(4,5)) # 2-D test
print ""
### END YOUR CODE
if __name__ == "__main__":
sanity_check()
your_sanity_checks()